54 research outputs found

    NfL and pNfH are increased in Friedreich's ataxia

    Get PDF
    Objective: To assess neurofilaments as neurodegenerative biomarkers in serum of patients with Friedreich’s ataxia. / Methods: Single molecule array measurements of neurofilament light (NfL) and heavy chain (pNfH) in 99 patients with genetically confirmed Friedreich’s ataxia. Correlation of NfL/pNfH serum levels with disease severity, disease duration, age, age at onset, and GAA repeat length. / Results: Median serum levels of NfL were 21.2 pg/ml (range 3.6–49.3) in controls and 26.1 pg/ml (0–78.1) in Friedreich’s ataxia (p = 0.002). pNfH levels were 23.5 pg/ml (13.3–43.3) in controls and 92 pg/ml (3.1–303) in Friedreich’s ataxia (p = 0.0004). NfL levels were significantly increased in younger patients (age 16–31 years, p < 0.001) and patients aged 32–47 years (p = 0.008), but not in patients of age 48 years and older (p = 0.41). In a longitudinal assessment, there was no difference in NfL levels in 14 patients with repeated sampling 2 years after baseline measurement. Levels of NfL correlated inversely with GAA1 repeat length (r = − 0.24, p = 0.02) but not with disease severity (r = − 0.13, p = 0.22), disease duration (r = − 0.06, p = 0.53), or age at onset (r = 0.05, p = 0.62). / Conclusion: Serum levels of NfL and pNfH are elevated in Friedreich’s ataxia, but differences to healthy controls decrease with increasing age. Long-term longitudinal data are required to explore whether this reflects a selection bias from early death of more severely affected individuals or a slowing down of the neurodegenerative process with age. In a pilot study over 2 years of follow-up—a period relevant for biomarkers indicating treatment effects—we found NfL levels to be stable

    Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3), caused by a CAG repeat expansion in the ataxin-3 gene (ATXN3), is characterized by neuronal polyglutamine (polyQ) ATXN3 protein aggregates. Although there is no cure for SCA3, gene-silencing approaches to reduce toxic polyQ ATXN3 showed promise in preclinical models. However, a major limitation in translating putative treatments for this rare disease to the clinic is the lack of pharmacodynamic markers for use in clinical trials. Here, we developed an immunoassay that readily detects polyQ ATXN3 proteins in human biological fluids and discriminates patients with SCA3 from healthy controls and individuals with other ataxias. We show that polyQ ATXN3 serves as a marker of target engagement in human fibroblasts, which may bode well for its use in clinical trials. Last, we identified a single-nucleotide polymorphism that strongly associates with the expanded allele, thus providing an exciting drug target to abrogate detrimental events initiated by mutant ATXN3. Gene-silencing strategies for several repeat diseases are well under way, and our results are expected to improve clinical trial preparedness for SCA3 therapies

    Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology

    Get PDF
    Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20–66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post-mortem cases. Our study provides evidence that Dravet syndrome is at least in part an epileptic encephalopathy

    SCAview: an Intuitive Visual Approach to the Integrative Analysis of Clinical Data in Spinocerebellar Ataxias

    Get PDF
    With SCAview, we present a prompt and comprehensive tool that enables scientists to browse large datasets of the most common spinocerebellar ataxias intuitively and without technical effort. Basic concept is a visualization of data, with a graphical handling and filtering to select and define subgroups and their comparison. Several plot types to visualize all data points resulting from the selected attributes are provided. The underlying synthetic cohort is based on clinical data from five different European and US longitudinal multicenter cohorts in spinocerebellar ataxia type 1, 2, 3, and 6 (SCA1, 2, 3, and 6) comprising > 1400 patients with overall > 5500 visits. First, we developed a common data model to integrate the clinical, demographic, and characterizing data of each source cohort. Second, the available datasets from each cohort were mapped onto the data model. Third, we created a synthetic cohort based on the cleaned dataset. With SCAview, we demonstrate the feasibility of mapping cohort data from different sources onto a common data model. The resulting browser-based visualization tool with a thoroughly graphical handling of the data offers researchers the unique possibility to visualize relationships and distributions of clinical data, to define subgroups and to further investigate them without any technical effort. Access to SCAview can be requested via the Ataxia Global Initiative and is free of charge

    Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study

    Get PDF
    BACKGROUND: Spinocerebellar ataxias are dominantly inherited progressive ataxia disorders that can lead to premature death. We aimed to study the overall survival of patients with the most common spinocerebellar ataxias (SCA1, SCA2, SCA3, and SCA6) and to identify the strongest contributing predictors that affect survival. METHODS: In this longitudinal cohort study (EUROSCA), we enrolled men and women, aged 18 years or older, from 17 ataxia referral centres in ten European countries; participants had positive genetic test results for SCA1, SCA2, SCA3, or SCA6 and progressive, otherwise unexplained, ataxias. Survival was defined as the time from enrolment to death for any reason. We used the Cox regression model adjusted for age at baseline to analyse survival. We used prognostic factors with a p value less than 0·05 from a multivariate model to build nomograms and assessed their performance based on discrimination and calibration. The EUROSCA study is registered with ClinicalTrials.gov, number NCT02440763. FINDINGS: Between July 1, 2005, and Aug 31, 2006, 525 patients with SCA1 (n=117), SCA2 (n=162), SCA3 (n=139), or SCA6 (n=107) were enrolled and followed up. The 10-year survival rate was 57% (95% CI 47–69) for SCA1, 74% (67–81) for SCA2, 73% (65–82) for SCA3, and 87% (80–94) for SCA6. Factors associated with shorter survival were: dysphagia (hazard ratio 4·52, 95% CI 1·83–11·15) and a higher value for the Scale for the Assessment and Rating of Ataxia (SARA) score (1·26, 1·19–1·33) for patients with SCA1; older age at inclusion (1·04, 1·01–1·08), longer CAG repeat length (1·16, 1·03–1·31), and higher SARA score (1·15, 1·10–1·20) for patients with SCA2; older age at inclusion (1·44, 1·20–1·74), dystonia (2·65, 1·21–5·53), higher SARA score (1·26, 1·17–1·35), and negative interaction between CAG and age at inclusion (0·994, 0·991–0·997) for patients with SCA3; and higher SARA score (1·17, 1·08–1·27) for patients with SCA6. The nomogram-predicted probability of 10-year survival showed good discrimination (c index 0·905 [SD 0·027] for SCA1, 0·822 [0·032] for SCA2, 0·891 [0·021] for SCA3, and 0·825 [0·054] for SCA6). INTERPRETATION: Our study provides quantitative data on the survival of patients with the most common spinocerebellar ataxias, based on a long follow-up period. These results have implications for the design of future interventional studies of spinocerebellar ataxias; for example, the prognostic survival nomogram could be useful for selection and stratification of patients. Our findings need validation in an external population before they can be used to counsel patients and their families. FUNDING: European Union 6th Framework programme, German Ministry of Education and Research, Polish Ministry of Scientific Research and Information Technology, European Union 7th Framework programme, and Fondation pour la Recherche Médicale

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC

    Full text link

    Introduction and Historical Review

    Get PDF
    corecore