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Abstract
With SCAview, we present a prompt and comprehensive tool that enables scientists to browse large datasets of the most 
common spinocerebellar ataxias intuitively and without technical effort. Basic concept is a visualization of data, with a 
graphical handling and filtering to select and define subgroups and their comparison. Several plot types to visualize all data 
points resulting from the selected attributes are provided. The underlying synthetic cohort is based on clinical data from five 
different European and US longitudinal multicenter cohorts in spinocerebellar ataxia type 1, 2, 3, and 6 (SCA1, 2, 3, and 6) 
comprising > 1400 patients with overall > 5500 visits. First, we developed a common data model to integrate the clinical, 
demographic, and characterizing data of each source cohort. Second, the available datasets from each cohort were mapped 
onto the data model. Third, we created a synthetic cohort based on the cleaned dataset. With SCAview, we demonstrate the 
feasibility of mapping cohort data from different sources onto a common data model. The resulting browser-based visualiza-
tion tool with a thoroughly graphical handling of the data offers researchers the unique possibility to visualize relationships 
and distributions of clinical data, to define subgroups and to further investigate them without any technical effort. Access to 
SCAview can be requested via the Ataxia Global Initiative and is free of charge.
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Introduction

In rare diseases, such as spinocerebellar ataxias (SCA), the 
number of patients at single centers is usually very lim-
ited. Therefore, the integration of clinical cohort data from 

different sources is desirable to create sufficient datasets 
to address scientific questions. For the most common spi-
nocerebellar ataxias, SCA1, 2, 3, and 6, several longitudinal 
clinical cohort studies were successfully initiated and pro-
vided insights into the course of these rare disorders [1–13]. 

 *	 Jennifer Faber 
	 jennifer.faber@dzne.de

1	 Department of Neurology, University Hospital Bonn, Bonn, 
Germany

2	 DRK Kamillus Klinik, Asbach, Germany
3	 Fraunhofer Institute for Algorithms and Scientific Computing 

(SCAI), St. Augustin, Germany
4	 German Center for Neurodegenerative Diseases (DZNE), 

Bonn, Germany
5	 Bioinformatics Group, Department of Computer Science, 

Albert-Ludwigs-University Freiburg, Freiburg, Germany
6	 Institute of General Practice and Family Medicine, University 

Hospital Bonn, Bonn, Germany

7	 Department of Neurology, University Hospital Heidelberg, 
Heidelberg, Germany

8	 Department of Neurology, Columbia University, New York, 
NY, USA

9	 Department of Neurology, Houston Methodist Research 
Institute, Houston, TX, USA

10	 ZB Med, Information Centre for Life Sciences, Cologne, 
Germany

11	 Department of Geodesy and Geoinformation, University 
of Bonn, Bonn, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12311-023-01546-0&domain=pdf


	 The Cerebellum

1 3

However, access to this cohort data is limited for various 
reasons. Not only data protection poses a challenge, but also 
inhomogeneity of the data, which often requires extensive, 
largely manual pre-processing. Unification, normalization, 
and re-coding of the data is necessary for the integrative 
analysis due to inconsistent storage and coding of data from 
different sources. Since such data processing and unification 
is challenging and time-consuming, in practice, this task is 
not carried out by the clinical expert but by a data analyst 
who is lacking the knowledge of the clinical details. As a 
result, there is often a significant delay and communication 
gap between data analyst and medical scientist, which (1) in 
the worst case leads to a loss of information due to misattri-
bution of analogies and (2) imposes considerable limitations 
on the options for hypothesis-free data evaluation. Accord-
ingly, in our project, clinical scientists and technical experts 
were involved. We defined a model to specify analogies and 
transformations of heterogeneous data sources based on a 
consented tabular format to ascertain a scientifically correct 
and technically unequivocal definition of analogies of the 
data to be pooled.

Moreover, the abovementioned communication gap 
impairs the analysis of scientific data, the generation and 
evaluation of hypotheses, and the quick and easy hypothesis-
free visualization and browsing of existing data. In practice, 
the clinical scientist asks the data analyst to process and 
plot the data based on a predefined selection of hypotheses. 
Ideally, additional hypotheses from the visual inspection 
of the resulting plots can be derived, and subsequently, the 
clinical scientist refines his requests to the data analyst. 
Data visualizations that would be accessible without much 
technical effort, such as direct graphical handling of data, 
would provide researchers with the unique opportunity to 
explore underlying relationships of clinical, demographic, 
and genetic data themselves. It would allow clinical scien-
tists to browse data in a hypothesis-free manner and gain a 
better understanding of relationships, subsets, and limita-
tions independently and immediately.

With “SCAview,” we introduce an easily accessible 
online tool that allows to visualize, select, and compare clin-
ical data of SCA1, SCA2, SCA3, and SCA6 mutation carri-
ers. The graphical handling enables users to easily visualize 
distributions of and relations between clinical attributes. For 
SCAview, we integrated SCA research cohort data consist-
ing of up to now 1417 mutation carriers with 5509 clinical 
visits over an observation period of up to 8 years from 5 
different European and US cohort data sources [1–13]. In 
the open release, we implemented a synthetic version of the 
integrated data. SCAview is freely available for all registered 
members of the Ataxia Global Initiative (AGI) and for inter-
ested researches upon reasonable request.

Methods

Integration of Data

The basis for the integration of data from five SCA cohorts, 
namely ESMI, EUROSCA, RISCA, SCA Registry, and 
CRC-SCA, was the precise definition of analogous and com-
parable variables as well as of the encoding used for defined 
values in each data source. First, we defined a data model 
for every attribute included in SCAview, like sex, and age 
of onset, ataxia severity scale values. Second, we mapped or 
transformed equivalent, analogous, and comparable attrib-
utes of each source data set. Mapping and transformation 
of source data to a common data model ranges from simple 
cases to more complex transformations that require precise 
knowledge of the study design and data. Trivial is the map-
ping of different identifiers for unequivocal attributes, like 
“DateOfBirth,” “yob,” or “DOB” for the date of birth. In 
other cases, simple calculations can be applied, e.g., for age 
of onset versus year of onset in combination with year of 
birth. Other attributes require precise knowledge about the 
design, e.g., in the case of age of onset (attribute “aoo”). In 
the source data of SCA Registry, ESMI, EUROSCA, and 
RISCA age of onset is defined as the reported first occur-
rence of gait disturbances. Consequently, it needs to be 
mapped onto “WALKINGPROBLEMSYEARS” of CRC-
SCA data. Finally, e.g., for the transformation of disease 
stages one has to agree on a consensus of transformations. 
Representative examples of the underlying mappings and 
transformations can be found in Suppl. Table 1 as well as in 
the documentation section of the viewer. For each attribute 
included in SCAview, the distinct mapping, re-coding, and 
transformation steps that need to be applied to the source 
data was determined by clinical scientists in a comprehen-
sive textual format in a tabular sheet. Third, we developed 
an import protocol, that reads the source data, provided in 
the frequently used CSV or EXCEL format, unifies the data 
based on the defined mappings, and reformats the data to 
an EAV-format (Entity–Attribute–Value) that represents 
one data point per line (e.g., Entity: PatientXYZ at time-
point 2006_09_22, Attribute: SARA_GAIT, Value: 3). This 
data-format allows the simple concatenation of increasing 
amounts of data. Since the timestamp of one study visit can 
be spread over a certain range, even more when clinical 
routine data is used to enlarge the database, we extended 
every entity by a distinct value for the visit. We clustered 
timestamps within a range of < 28 days as a cluster or in 
other words as one visit. This definition is a given pre-setting 
during the import process. For non-dynamic information that 
is time-invariant like date of birth, genetic information or 
sex, the timestamp and visit information is not valid and the 
respective attributes are marked as static in the data model.
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Once defined, the mapping or more concretely the import 
can be applied repetitively if the source data is enlarged 
without any additional effort as long as the data model 
does not change. Finally, the import protocol performs data 
sanitizing by checking for plausible values (data types and 
ranges).

Attributes included in SCAview are demographic infor-
mation (age, sex), characterizing data (such as CAG repeat 
length of the longer and shorter allele, age of onset if appli-
cable) and visit-related assessments of disease severity: 
Scale for the Assessment and Rating of Ataxia (SARA, 8 
sub-items and sum score) [14], Inventory of Non-Ataxia 
Signs (INAS, categories and count) [15], and disease stage 
[16]. The current available attributes are listed in the Suppl. 
Table 1. Moreover, a complete list is deposited in the viewer 
as well.

Creation of the Synthetic Cohort

In order to prevent the traceability of participants and since 
SCAview employs partially unpublished data, the final inte-
grated SCAview dataset was fed into a noise-adding model 
for the variables age, CAG repeat length of the longer as well 
as shorter allele, and the reported age of onset to generate a 
synthetic cohort. The conceptual and technical details are 
described in Wegner et al. (https://​doi.​org/​10.​48550/​arxiv.​
2210.​16649) [17]. The synthetic cohort preserves basic cor-
relations and distribution properties. To the timestamp of the 
date of birth, we added a random number of days resulting 
in a random value within the range of ± 1.5 years. Notably, 
timestamps that would allow to identify visit or birth dates 
are not included in the viewer. A discrete synthetic cohort’s 
variable X̃ is synthesized from a variable X of the original 
SCAview dataset via an affine noise-adding model 
X̃ = f (X) = X + � , where � is randomly drawn from a normal 
distribution located at zero with a variance corresponding to 
the variance Var(X) of the original variable X scaled by a 
parameter b , that was optimized for each variable separately 
with respect to its distribution. The model preserves a vari-
able’s mean ( E[X̃] = E[X] ) as well as the pair-wise Pearson 
correlation coefficient up to a scaling factor: �

X̃,Ỹ
=

1

1+b
�X,Y . 

This model was preferred over other approaches due to its 
simplicity and computational efficiency that in addition 
allows a convenient application to other cohorts perspec-
tively (for more details see: https://​doi.​org/​10.​48550/​arxiv.​
2210.​16649) [17]. In addition, the original cohort pseudo-
nyms have been replaced and the random assignment to the 
new identifier is not stored. In order to achieve GDPR com-
pliance while maintaining the utility of data, these steps 
were implemented and, together with the high effort for fil-
tering at the individual level, considerably minimize the pos-
sibility of re-identifying an individual.

Browser‑Based Visualization Tool

To enable the clinical scientist to browse cohort data, we 
developed an intuitive tool for easy data visualization. Exist-
ing tools for data handling and visualization beginning from 
simple spreadsheets like Microsoft’s Excel (www.​micro​soft.​
com) to mathematical analysis tools like Graphpad Prism 
(graphpad.com) and programmable data analysis software 
like IGOR (www.​wavem​etrics.​com) as well as IBM’s SPSS, 
SAS, GraphPad Prism, TIBCO Spotfire, and R. The most 
prominent example for more medical informatics oriented 
platform is i2b2 (www.​i2b2.​org), designed for professional 
data organization and field-specific data science approaches. 
However, apart from necessary data annotation steps, those 
applications require either time-consuming manual sort-
ing, selection, and pairing of data to plot it for every single 
request or, if they are more powerful and provide some form 
of automation, they presume an advanced technical exper-
tise and pre-customization for use. Therefore, they are often 
primarily handled by non-clinical experts like statisticians. 
In all tools, we discovered the user has to perform data han-
dling in a tabular and numeric manner first, gaining a visu-
alization in subsequent steps. Consequently, such solutions 
lack a first-glance visual exploration of the data. To over-
come this limitations, SCAview is designed as a web-based 
application requiring no installation or setup. SCAview con-
structs from a data service that works as a backend module 
for processing and providing the data, and a visualization 
service, that works as a frontend the user interacts with. The 
backend module comprises a Django (https://​www.​djang​
oproj​ect.​com/) application that handles the data logic and 
a Redis DB (https://​redis.​io/) enabling quick data access. 
The frontend is developed using React (https://​react​js.​org/) 
and the React version of Plotly (https://​plotly.​com/​javas​cript/​
react/) to create interactive plots.

Results

In the final data set, we included 1417 subjects (264 SCA1, 
297 SCA2, 551 SCA3, 206 SCA6, and 99 healthy controls 
(HC)). Thirty-one subjects were excluded due to missing or 
invalid genetic information, 16 subjects were excluded due 
to invalid SARA item scores (× 0.5-scoring in items that 
only allow for integer values, namely gait, stance, sitting, 
and speech) and 5 subjects for which only characterizing 
and demographic but no visit-specific data were available. 
Since in the field of ataxia research some consented scales 
and assessments are established (SARA score, INAS count), 
the data was equivalent in many cases. In other cases, the 
data describes similar aspects but uses different scales and 
marks to define. Following the mapping or transformation 

https://doi.org/10.48550/arxiv.2210.16649)
https://doi.org/10.48550/arxiv.2210.16649)
https://doi.org/10.48550/arxiv.2210.16649)
https://doi.org/10.48550/arxiv.2210.16649)
http://www.microsoft.com
http://www.microsoft.com
http://www.wavemetrics.com
http://www.i2b2.org
https://www.djangoproject.com/
https://www.djangoproject.com/
https://redis.io/
https://reactjs.org/
https://plotly.com/javascript/react/
https://plotly.com/javascript/react/
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and merging of the data, we evaluated the homogeneity of 
the different sources by a first visual inspection revealing 
no obvious differences. Nevertheless, this paper does not 
address the question of statistical homogeneity or potential 
differences of the different cohorts. Except for missing data 
in single subjects, all attributes included in the actual ver-
sion of SCAview (see Suppl. Table 1) were represented in 
all sources, except for the disease stage in the RISCA cohort 
of at-risk subjects of SCA1, 2, 3, or 6 mutation carriers [4, 
6]. All 1417 accepted subjects form the basis to create the 
synthetic cohort. This synthetic or virtual cohort is the data 
set that can be explored within SCAview.

Data Browsing

SCAview was conceptualized for the first-glance visuali-
zation of datasets and graphical handling of all data pro-
cessing. Consequently, the browsing of data is based on 
the graphical presentation of selected attributes from the 
beginning. The current version provides four plot types: (1) 
histograms and (2) scatter plots to depict the distribution and 
correlation of numerical data, respectively as well as (3) bar 

graphs to quantify categorical attributes. Finally, (4) timeline 
plots to visualize the development of attributes over time. In 
the latter plot type, the value of each data point is depicted 
versus its timestamp in relation to a reference date (e.g., date 
of birth or disease onset). The resulting visualization is then, 
e.g., the SARA sum score plotted against age or SARA sum 
score plotted against disease duration.

In all types of plots, an additional attribute can be selected 
to color the data points. If a categorical attribute is selected, 
it is represented by different distinct colors. Numerical val-
ues spanning across a particular range, e.g., SARA sum 
score or CAG repeats, are encoded according to a color map. 
Multiple plots can be open in parallel. Figure 1 shows exam-
ple screenshots of the SCAview user interface.

Filtering

In the beginning, the complete data set is depicted. Accord-
ing to the graphical handling of data processing, subgroups 
can be defined via a selection tool in any graph. For exam-
ple, if a clinical scientist is only interested in SCA3 muta-
tion carriers with more than 65 CAGs in the longer allele, 

Fig. 1   Example Screenshot of SCAview. On the left side one can see 
the filter-setting window, in the middle section, four examples for the 
different plot types available are depicted and on the right side the 
configuration window for the actual plot is displayed (here left bottom 
scatter plot, marked with a blue outline). The plot in the upper left 
corner shows a histogram of the CAG length of the longer allele with 
the genotype as additional color-coded attribute. The right upper cor-
ner shows a bar plot of each genotype with sex as color-coded addi-

tional attribute. In the left bottom corner, a timeline plot of SARA 
sum score versus reported disease duration displays two subgroups 
that were previously defined by filter settings: SCA3 mutation carri-
ers with a CAG repeat length of more and those with less than 65 
CAGs of the longer allele. The example plot on the right bottom 
corner shows a scatter plot of the reported age of onset versus CAG 
repeats  on the longer allele, again with the genotype as additional 
color-coded attribute
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one can easily select the SCA3 in the bar plot of genotype 
and the CAG repeat range in the histogram of longer allele 
CAGs, respectively. The chosen filters are automatically 
applied to the dataset, and in all generated plots, the selected 
subgroup is highlighted, while the excluded data is grayed 
out (Fig. 2). This cross-filtering allows one to define a filter 
in one graph and observe the effect of the selection in all 
other visualizations. After choosing a selection defined by 
particular filters, one additional filtering option has to be set. 
Since for most patients in the dataset multiple values for a 
specific attribute have been measured over the time of obser-
vation, two different filter concepts in addition to the chosen 
selection characteristics are provided: (i) patient-wise filter-
ing and (ii) visit-wise filtering. In the setting of patient-wise 
filtering, subcohorts include all patients who have at least 
one visit with the specific subcohort-defining attribute. In 
contrast, the visit-wise filtering does not select patients, but 
only those visits, where the attribute(s) fits to the subcohort 
definition. One concrete example to outline the differences 
in the patient- vs. visit-wise filtering would be as follows: 
The researcher is interested in subjects with a SARA sum 
score of > 20. Subject no. 100 has 3 visits, with a SARA 
sum score of 12, 16, and 22, respectively. In the patient-wise 
setting, subject no. 100 would be included in the selection 
“SARA sum score > 20” with all three visits. In contrast, in 

the visit-wise setting, subject no 100 would be included in 
the selection “SARA sum score > 20” only with its last visit.

Subgroups

All applied filters are summed up in a tabular representa-
tion. Here, a specific filter set can be defined and labeled as 
a subgroup. These subgroups act as bookmarks to recall this 
set of filters. In addition, defined subgroups can be used to 
group the data in a plot to perform a direct visual compari-
son of two or more selected subgroups (see timeline plot of 
disease duration versus SARA sum score in the left lower 
corner in Fig. 1, comparing SCA3 mutation carriers with 
more than 65 CAG repeats in the longer allele compared to 
those with less).

Discussion

Integrated Data set

Spinocerebellar ataxias (SCAs) are the most common 
autosomal-dominantly inherited ataxias worldwide and 
have been studied in several European and US longitudinal 
observational studies. We had access to longitudinal cohort 

Fig. 2   Shown here is an example screenshot of plot types in SCA-
view with the applied graphically defined filtering of (i) SCA3 (box 
selection in the bottom left plot) + (ii) CAG > 65 (box selection in 
the upper left plot). The bar and timeline plots of the bottom row 

are the same as in Fig. 1 (right upper corner and left bottom corner). 
Notably, now only the selected subcohort defined by filter settings of 
“SCA3 + CAG > 65” is depicted with the entire population shadowed 
in the background
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data from EUROSCA, RISCA, ESMI & SCA Registry, and 
CRC-SCA that comprise together more than 5500 visits of 
more than 1400 SCA1, SCA2, SCA3, and SCA6 mutation 
carriers. The integrated data formed the basis to create a 
synthetic cohort for SCAview. Since it is the first integration 
of the most extensive cohort studies available, it is unique 
in its size. To enable a wide scientific community of ataxia 
researchers to browse and explore this integrated dataset in 
a first glance in SCAview, we had to shuffle the data due 
to data protection reasons and of partly unpublished data. 
Correlations and distributions within the created synthetic 
cohort are largely kept [17]. To ensure that no subject can 
be re-identified even with the creation of this synthetic ver-
sion of a virtual cohort we did not include the study site in 
SCAview. To include at least the continent of origin might 
be possible and still maintain data protection valid as more 
data sets become available.

Facilitated Data Inspection

Inspection of such extensive data, the selection of sub-
groups according to specific features, the visualization of 
correlations, and subsequent generation of hypotheses and 
their evaluation are common procedures in clinical sci-
ence. However, processing, selection, and visualization of 
the data requires technical expertise, is time-consuming, 
and therefore frequently carried out by a data scientist 
lacking the clinical knowledge resulting in delay or even 
misunderstanding.

To enable the scientists and researchers to explore data 
without the service of any data scientist, the basic con-
cept of SCAview is the intuitive first-glance visualization 
of datasets and graphical handling of all data processing. 
This contrasts with most existing tools, where the ini-
tial step is a hierarchical, textual, and logical definition 
of a cohort of interest. These tools include widely used 
spreadsheet applications like Microsoft’s Excel. Beyond, 
more powerful, scripting-oriented tools are, e.g., IBM’s 
SPSS, SAS, GraphPad Prism, and TIBCO Spotfire, how-
ever addressing primarily statisticians. The open-source 
software R might additionally be used by data scientists, 
who focus more on frameworks like Python and JavaS-
cript, which, like R, provide a vast number of libraries 
for data handling, statistical tests, and visualizations. 
While all these solutions require education in program-
ming, SCAview opens the data to an integrative, quick 
visual analysis, hypothesis generation, and evaluation in 
a synthetic cohort representative for the integrative data-
set of large longitudinal observational cohorts in SCA1, 
SCA2, SCA3, and SCA6. In practice, the visualization of 
SCA data with SCAview presented here were tested and 
used to demonstrate distribution and relations of clinical 
data within the research contexts in the German Center of 

Neurodegenerative Diseases (DZNE), Bonn, in presenta-
tions as well as internal scientific reports and educational 
trainings. However, as outlined above SCAview is based 
on a synthetic cohort. SCAview explicitly does not pro-
vide options of statistical testing or display of correlation 
coefficients, as this might lead to the false assumption of 
real data. Consequently, we did not include any statistical 
testing to avoid misinterpretations. Moreover, we would 
like to point out that no conclusions on an individual level 
can be drawn, neither for prediction of diagnosis nor for 
clinical deterioration. SCAs show a high level of intrain-
dividual variability even in mutation carriers of the same 
family. Initiatives like the Critical Path to Therapeutics 
for the Ataxias (CPTA, https://c-​path.​org/​progr​ams/​cpta/) 
offer perspectives for researches to get direct access to real 
data of large ataxia cohorts. However, we are convinced 
that SCAview has an added values for ataxia researchers 
since it is unique in allowing scientists to become familiar 
with the relations of clinical data within SCA1, 2, 3, and 6 
on their own without technical effort, increase knowledge, 
and to develop hypotheses.

Perspectives

We consider SCAview as an active development and 
objective of future research. Any updates and further 
developments will be documented and made available 
in the documentation page. Our aim is to continuously 
extend the underlying datasets by including additional 
visits of ongoing longitudinal cohort studies and addi-
tional worldwide cohort data. Moreover, we aim to 
increase the number of available attributes. In particular, 
we aim to include patient-reported outcome measures. 
However, as outlined in the results section, this work does 
not address the question of the homogeneity of the dif-
ferent sources but provides a database for visualization. 
Before the integration of new cohort data, in particular 
from non-European and non-US sites, a data check to 
ensure consistency of typical features (e.g., such as pro-
gression rates) needs to be tested.

The challenge to overcome the communication gap 
between clinical and technical experts resulted in (1) 
a simple but ubiquitary available, comprehensive, and 
easily re-usable model to define data mapping or trans-
formation and (2) an intuitive visualization tool with 
overall graphical handling. Perspectively, the benefit 
of an easy and intuitive handling of clinical datasets 
should be rendered available for individual local pro-
jects and datasets. Currently, the internal importer pro-
tocol is code-based and limited to the data downloads 
of the included cohorts. The usage of input data in form 
of tables in common formats is in preparation. Again, 
the aim is to keep the simplicity and independence 

https://c-path.org/programs/cpta/
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from IT support for the clinical user. Like SCAview, 
such a future upload setting should be based on tech-
nologies that do not need any installation of databases 
or administrator rights with a user-friendly guidance, 
e.g., via graphical user interfaces (GUI). We do not 
envision to automatically integrate local data in the 
main SCAview data set. Local data will be visible for 
the uploading researcher only and can easily be iden-
tified via filtering and thereby color coded as a third 
item in any plot.

Taken together, SCAview presents a novel and unique 
insight into clinical aspects of the most common spinocer-
ebellar ataxias, SCA1, SCA2, SCA3, and SCA6, by present-
ing the first unified and merged cohort data and making it 
accessible to a broad community of interested researchers 
and clinicians by providing an intuitive tool to explore and 
visualize these data.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12311-​023-​01546-0.
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