5,693 research outputs found

    What controls the large-scale magnetic fields of M dwarfs?

    Full text link
    Observations of active M dwarfs show a broad variety of large-scale magnetic fields encompassing dipole-dominated and multipolar geometries. We detail the analogy between some anelastic dynamo simulations and spectropolarimetric observations of 23 M stars. In numerical models, the relative contribution of inertia and Coriolis force in the global force balance -estimated by the so-called local Rossby number- is known to have a strong impact on the magnetic field geometry. We discuss the relevance of this parameter in setting the large-scale magnetic field of M dwarfs.Comment: 4 pages, 3 figures, conference proceeding, IAUS 302 'Magnetic Fields Throughout the Stellar Evolution', (26-30 Aug 2013, Biarritz, France

    What controls the magnetic geometry of M dwarfs?

    Full text link
    Context: observations of rapidly rotating M dwarfs show a broad variety of large-scale magnetic fields encompassing dipole-dominated and multipolar geometries. In dynamo models, the relative importance of inertia in the force balance -- quantified by the local Rossby number -- is known to have a strong impact on the magnetic field geometry. Aims: we aim to assess the relevance of the local Rossby number in controlling the large-scale magnetic field geometry of M dwarfs. Methods: we explore the similarities between anelastic dynamo models in spherical shells and observations of active M-dwarfs, focusing on field geometries derived from spectropolarimetric studies. To do so, we construct observation-based quantities aimed to reflect the diagnostic parameters employed in numerical models. Results: the transition between dipole-dominated and multipolar large-scale fields in early to mid M dwarfs is tentatively attributed to a Rossby number threshold. We interpret late M dwarfs magnetism to result from a dynamo bistability occurring at low Rossby number. By analogy with numerical models, we expect different amplitudes of differential rotation on the two dynamo branches.Comment: 4 pages, 4 figures, accepted for publication in A&

    A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra

    Full text link
    We study finite loop models on a lattice wrapped around a cylinder. A section of the cylinder has N sites. We use a family of link modules over the periodic Temperley-Lieb algebra EPTL_N(\beta, \alpha) introduced by Martin and Saleur, and Graham and Lehrer. These are labeled by the numbers of sites N and of defects d, and extend the standard modules of the original Temperley-Lieb algebra. Beside the defining parameters \beta=u^2+u^{-2} with u=e^{i\lambda/2} (weight of contractible loops) and \alpha (weight of non-contractible loops), this family also depends on a twist parameter v that keeps track of how the defects wind around the cylinder. The transfer matrix T_N(\lambda, \nu) depends on the anisotropy \nu and the spectral parameter \lambda that fixes the model. (The thermodynamic limit of T_N is believed to describe a conformal field theory of central charge c=1-6\lambda^2/(\pi(\lambda-\pi)).) The family of periodic XXZ Hamiltonians is extended to depend on this new parameter v and the relationship between this family and the loop models is established. The Gram determinant for the natural bilinear form on these link modules is shown to factorize in terms of an intertwiner i_N^d between these link representations and the eigenspaces of S^z of the XXZ models. This map is shown to be an isomorphism for generic values of u and v and the critical curves in the plane of these parameters for which i_N^d fails to be an isomorphism are given.Comment: Replacement of "The Gram matrix as a connection between periodic loop models and XXZ Hamiltonians", 31 page

    Thermodynamic metrics and optimal paths

    Full text link
    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.Comment: 5 page

    DeepWalk: Online Learning of Social Representations

    Full text link
    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.Comment: 10 pages, 5 figures, 4 table

    Temperature and magnetic field dependences of the elastic constants of Ni-Mn-Al magnetic Heusler alloys

    Get PDF
    We report on measurements of the adiabatic second order elastic constants of the off-stoichiometric Ni54_{54}Mn23_{23}Al23_{23} single crystalline Heusler alloy. The variation in the temperature dependence of the elastic constants has been investigated across the magnetic transition and over a broad temperature range. Anomalies in the temperature behaviour of the elastic constants have been found in the vicinity of the magnetic phase transition. Measurements under applied magnetic field, both isothermal and variable temperature, show that the value of the elastic constants depends on magnetic order, thus giving evidence for magnetoelastic coupling in this alloy system.Comment: 7 pages, 5 figures. Accepted for publication in Physical the Review

    Kondo Effects and Multipolar Order in the cubic PrTr2Al20 (Tr=Ti, V)

    Full text link
    Our single crystal study reveals that PrTr2Al20 (Tr = Ti and V) provides the first examples of a cubic {\Gamma}3 nonmagnetic ground doublet system that shows the Kondo effect including a -ln T dependent resistivity. The {\Gamma}3 quadrupolar moments in PrV2Al20 induce anomalous metallic behavior through hybridization with conduction electrons, such as T^{1/2} dependent resistivity and susceptibility below ~ 20 K down to its ordering temperature T_O = 0.6 K. In PrTi2Al20, however, quadrupoles are well-localized and exhibit an order at T_O = 2.0 K. Stronger Kondo coupling in PrV2Al20 than in PrTi2Al20 suppresses quadrupolar ordering, and instead promotes hybridization between the {\Gamma}3 doublet and conduction electrons, leading to most likely the quadrupolar Kondo effect.Comment: 12 pages, 4 figure

    Dipolar versus multipolar dynamos: the influence of the background density stratification

    Full text link
    Context: dynamo action in giant planets and rapidly rotating stars leads to a broad variety of magnetic field geometries including small scale multipolar and large scale dipole-dominated topologies. Previous dynamo models suggest that solutions become multipolar once inertia becomes influential. Being tailored for terrestrial planets, most of these models neglected the background density stratification. Aims: we investigate the influence of the density stratification on convection-driven dynamo models. Methods: three-dimensional nonlinear simulations of rapidly rotating spherical shells are employed using the anelastic approximation to incorporate density stratification. A systematic parametric study for various density stratifications and Rayleigh numbers allows to explore the dependence of the magnetic field topology on these parameters. Results: anelastic dynamo models tend to produce a broad range of magnetic field geometries that fall on two distinct branches with either strong dipole-dominated or weak multipolar fields. As long as inertia is weak, both branches can coexist but the dipolar branch vanishes once inertia becomes influential. The dipolar branch also vanishes for stronger density stratifications. The reason is the concentration of the convective columns in a narrow region close to the outer boundary equator, a configuration that favors non-axisymmetric solutions. In multipolar solutions, zonal flows can become significant and participate in the toroidal field generation. Parker dynamo waves may then play an important role close to onset of dynamo action leading to a cyclic magnetic field behavior. Conclusion: Our simulations also suggest that the fact that late M dwarfs have dipolar or multipolar magnetic fields can be explained in two ways. They may differ either by the relative influence of inertia or fall into the regime where both types of solutions coexist.Comment: 13 pages, 13 figures, 2 tables, accepted for publication in A&

    First isolation of a rhabdovirus from perch Perca fluviatilis in Switzerland

    Get PDF
    Perca fluviatilis is a fish species of increasing interest to the Swiss fish farming industry. In recent years, recirculation systems have been specifically set up to increase production. In one of these farms, abnormal spiral swimming associated with elevated mortalities occurred in repeated batches of imported perch shortly after stocking on several occasions. No bacterial or parasitic etiology was detected, but a virus grown in bluegill fry (BF-2) cells was identified as perch rhabdovirus. Subsequent investigations of other samples suggested a viral tropism for the central nervous system (CNS). Phylogenetic analysis of the partial N and entire G gene sequences positioned this isolate in genogroup C of the species Perch rhabdovirus, with high nucleotide and amino acid (aa) sequence identities with the DK5533 strain isolated in Denmark in 1989. Comparative studies using other closely related isolates allowed the distinction of 2 serological Patterns among perch rhabdoviruses and the identification of a proline substitution by a serine in Position 147 of the glycoprotein potentially involved in antigenic differentiation. Even if perch imported onto the farm tested negative by virus isolation prior to transport, they may have been the origin of this outbreak since CNS tissue was not included in the samples that were analyzed. Another possibility might be a sub-clinical infection with a viral load in resident fish too low to be detected. This study reports the first isolation of a perch rhabdovirus in Switzerland, and emphasizes the necessity of optimizing diagnostic tools that facilitate better control of the risks associated with fish translocation

    Prioritisation of weed species relevant to Australian livestock industries for biological control

    Get PDF
    Classical biological control is the only realistic option for managing many of the most serious weeds affecting livestock industries in Australia. This project developed and applied a framework, based on a matrix assessment system, to prioritise biocontrol efforts using new agents against 79 weed taxa. These taxa were identified in a concurrent project as priorities for Research, Development and Extension to address weed problems of Australian livestock industries. The framework considered the current and potential impacts of the weeds versus prospects for biocontrol. The latter combined assessments of feasibility of undertaking a biocontrol program that would yield host-specific agents, and the likelihood that agents would be successful in mitigating the impacts of the weeds once released in Australia. Each categorisation was supported with a written rationale that explained the ranking assigned and captured uncertainties. Key investment areas for future actions to address biocontrol knowledge gaps for each weed were identified. Twenty-one weeds with the highest combined rankings for biocontrol prospects and current and/or potential impacts were shortlisted as priority taxa for future investment. Results provide the best available information for funding agencies responsible for RD&E for livestock industries to make investment decisions across their weed biocontrol portfolio
    • …
    corecore