185 research outputs found
The Lightest Higgs Boson Mass in Pure Gravity Mediation Model
We discuss the lightest Higgs boson mass in the minimal supersymmetric
Standard Model with "pure gravity mediation". By requiring that the model
provides the observed dark matter density, we find that the lightest Higgs
boson is predicted to be below 132GeV. We also find that the upper limit on the
lightest Higgs boson mass becomes 128GeV, if we further assume thermal
leptogenesis mechanism as the origin of baryon asymmetry of universe. The
interrelations between the Higgs boson mass and the gaugino masses are also
discussed.Comment: 18 pages, 5 figures, minor correction
De Sitter ground state of scalar-tensor gravity and its primordial perturbation
Scalar-tensor gravity is one of the most competitive gravity theory to
Einstein's relativity. We reconstruct the exact de Sitter solution in
scalar-tensor gravity, in which the non-minimal coupling scalar is rolling
along the potential. This solution may have some relation to the early
inflation and present acceleration of the universe. We investigated its
primordial quantum perturbation around the adiabatic vacuum. We put forward for
the first time that exact de Sitter generates non-exactly scale invariant
perturbations. In the conformal coupling case, this model predicts that the
tensor mode of the perturbation (gravity wave) is strongly depressed.Comment: 9 page
The -essence scalar field in the context of Supernova Ia Observations
A -essence scalar field model having (non canonical) Lagrangian of the
form where
with constant is shown to be consistent with luminosity
distance-redshift data observed for type Ia Supernova. For constant ,
satisfies a scaling relation which is used to set up a differential
equation involving the Hubble parameter , the scale factor and the
-essence field . and are extracted from SNe Ia data and using
the differential equation the time dependence of the field is found to
be: . The constants
have been determined. The time dependence is similar to that of the
quintessence scalar field (having canonical kinetic energy) responsible for
homogeneous inflation. Furthermore, the scaling relation and the obtained time
dependence of the field is used to determine the -dependence of the
function .Comment: 8 pages, 5 figures, Late
Inflation and quintessence with nonminimal coupling
The nonminimal coupling (NMC) of the scalar field to the Ricci curvature is
unavoidable in many cosmological scenarios. Inflation and quintessence models
based on nonminimally coupled scalar fields are studied, with particular
attention to the balance between the scalar potential and the NMC term in the
action. NMC makes acceleration of the universe harder to achieve for the usual
potentials, but it is beneficial in obtaining cosmic acceleration with unusual
potentials. The slow-roll approximation with NMC, conformal transformation
techniques, and other aspects of the physics of NMC are clarified.Comment: 36 pages, LaTeX. Typos in Eq. (2.5) correcte
On exact solutions for quintessential (inflationary) cosmological models with exponential potentials
We first study dark energy models with a minimally-coupled scalar field and
exponential potentials, admitting exact solutions for the cosmological
equations: actually, it turns out that for this class of potentials the
Einstein field equations exhibit alternative Lagrangians, and are completely
integrable and separable (i.e. it is possible to integrate the system
analytically, at least by quadratures). We analyze such solutions, especially
discussing when they are compatible with a late time quintessential expansion
of the universe. As a further issue, we discuss how such quintessential scalar
fields can be connected to the inflationary phase, building up, for this class
of potentials, a quintessential inflationary scenario: actually, it turns out
that the transition from inflation toward late-time exponential quintessential
tail admits a kination period, which is an indispensable ingredient of this
kind of theoretical models. All such considerations have also been done by
including radiation into the model.Comment: Revtex4, 10 figure
Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)
The current focus of the CERN program is the Large Hadron Collider (LHC),
however, CERN is engaged in long baseline neutrino physics with the CNGS
project and supports T2K as recognized CERN RE13, and for good reasons: a
number of observed phenomena in high-energy physics and cosmology lack their
resolution within the Standard Model of particle physics; these puzzles include
the origin of neutrino masses, CP-violation in the leptonic sector, and baryon
asymmetry of the Universe. They will only partially be addressed at LHC. A
positive measurement of would certainly give a
tremendous boost to neutrino physics by opening the possibility to study CP
violation in the lepton sector and the determination of the neutrino mass
hierarchy with upgraded conventional super-beams. These experiments (so called
``Phase II'') require, in addition to an upgraded beam power, next generation
very massive neutrino detectors with excellent energy resolution and high
detection efficiency in a wide neutrino energy range, to cover 1st and 2nd
oscillation maxima, and excellent particle identification and
background suppression. Two generations of large water Cherenkov
detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely
successful. And there are good reasons to consider a third generation water
Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande
for both non-accelerator (proton decay, supernovae, ...) and accelerator-based
physics. On the other hand, a very massive underground liquid Argon detector of
about 100 kton could represent a credible alternative for the precision
measurements of ``Phase II'' and aim at significantly new results in neutrino
astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure
Newly Developed Mg2+–Selective Fluorescent Probe Enables Visualization of Mg2+ Dynamics in Mitochondria
Mg2+ plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg2+ regulation and the Mg2+ concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg2+ in mitochondria in intact cells. Here, we have developed a novel Mg2+–selective fluorescent probe, KMG-301, that is functional in mitochondria. This probe changes its fluorescence properties solely depending on the Mg2+ concentration in mitochondria under physiologically normal conditions. Simultaneous measurements using this probe together with a probe for cytosolic Mg2+, KMG-104, enabled us to compare the dynamics of Mg2+ in the cytosol and in mitochondria. With this method, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)–induced Mg2+ mobilization from mitochondria to the cytosol was visualized. Although a FCCP–induced decrease in the Mg2+ concentration in mitochondria and an increase in the cytosol were observed both in differentiated PC12 cells and in hippocampal neurons, the time-courses of concentration changes varied with cell type. Moreover, the relationship between mitochondrial Mg2+ and Parkinson's disease was analyzed in a cellular model of Parkinson's disease by using the 1-methyl-4-phenylpyridinium ion (MPP+). A gradual decrease in the Mg2+ concentration in mitochondria was observed in response to MPP+ in differentiated PC12 cells. These results indicate that KMG-301 is useful for investigating Mg2+ dynamics in mitochondria. All animal procedures to obtain neurons from Wistar rats were approved by the ethical committee of Keio University (permit number is 09106-(1))
SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment
The SNF1-related protein kinase 2 (SnRK2) family includes key regulators of osmostress and abscisic acid (ABA) responses in angiosperms and can be classified into three subclasses. Subclass III SnRK2s act in the ABA response while ABA-nonresponsive subclass I SnRK2s are regulated through osmostress. Here we report that an ancient subclass III SnRK2-based signalling module including ABA and an upstream Raf-like kinase (ARK) exclusively protects the moss Physcomitrella patens from drought. Subclass III SnRK2s from both Arabidopsis and from the semiterrestrial alga Klebsormidium nitens, which contains all the components of ABA signalling except ABA receptors, complement Physcomitrella snrk2− mutants, whereas Arabidopsis subclass I SnRK2 cannot. We propose that the earliest land plants developed the ABA/ARK/subclass III SnRK2 signalling module by recruiting ABA to regulate a pre-existing dehydration response and that subsequently a novel subclass I SnRK2 system evolved in vascular plants conferring osmostress protection independently from the ancient system
The Conformal Transformation in General Single Field Inflation with Non-Minimal Coupling
The method of a conformal transformation is applied to a general class of
single field inflation models with non-minimal coupling to gravity and
non-standard kinetic terms, in order to reduce the cosmological perturbative
calculation to the conventional minimal coupling case to all orders in
perturbation theory. Our analysis is made simple by the fact that all
perturbation variables in the comoving gauge are conformally invariant to all
orders. The structure of the vacuum, on which cosmological correlation
functions are evaluated, is also discussed. We show how quantization in the
Jordan frame for non-minimally coupled inflation models can be equivalently
implemented in the Einstein frame. It is thereafter argued that the general
N-point cosmological correlation functions (of the curvature perturbation) are
independent of the conformal frame.Comment: 15 pages, no figure, references adde
- …