2,225 research outputs found
Orchestrating Urban Footfall Prediction: Leveraging AI and batch-oriented workflow for Smart City Application
\ua9 Author(s) 2024. CC BY 4.0 License.This paper explores development and deployment of a smart city prediction system, demonstrating this capability on data generated by footfall counting sensors. Presented approach integrates classical machine learning (ML) techniques with process orchestration framework Apache Airflow. The architecture is designed to handle datasets in periodic batches, ensuring updates are regularly integrated into the prediction system and new predictions are created at every increment. Our work demonstrates ease at which similar systems can be developed, given sufficient volume of data and availability of compute power. This approach highlights that increasing number of smart sensors, availability of proven ML techniques and modern processing frameworks create a critical mass for proliferation of real-time forecasting solutions. Our results indicate that the developed system is effective in predicting footfall patterns, a variable that can be instrumental in applications such as traffic control, resource allocation, public safety, and urban planning. Used methodology is not limited to footfall data, and can be applied to other timeseries datastreams, making it a versatile tool for smart city context. Showcasing practical implementation and benefits of the system, the paper contributes to the ongoing efforts in developing a class of digital urban infrastructure
Pengaruh Teknik Sintesis Terhadap Kualitas Produk Fattyamina Sekunder
Secondary fattyamines has been synthesized by reacting primary fatty amines with acylchlorides and continued with reducing the corresponding secondary fattyamides formed to secondary fattyamines using LiAIH<I'Fatty amines are raw material of natural-based surfactants that can be derived from fatty acids, olefins, or alcohols, of which can be synthesized from natural sources such as palm oil. Conversion of secondary fatty amides to secondary fatty amines was evaluated through the quality of FTIR spectra on wave number of 1639-1645 em' (C=O vibration) and 1544-1555 em" (vibrations of C-H and of secondary amine N-H). Method of synthesis by using closed reflux syncore reactor was better than those of using microwave teflon tubes, and open reflux. The yield of 9 different secondary fatty amines obtainedfrom 5 to 27 replicates by the closed reflux syncore reactor method varied from 17%to 96%
Gravitational multi-NUT solitons, Komar masses and charges
Generalising expressions given by Komar, we give precise definitions of
gravitational mass and solitonic NUT charge and we apply these to the
description of a class of Minkowski-signature multi-Taub-NUT solutions without
rod singularities. A Wick rotation then yields the corresponding class of
Euclidean-signature gravitational multi-instantons.Comment: Some references adde
Consequences of a covariant Description of Heavy Ion Reactions at intermediate Energies
Heavy ion collisions at intermediate energies are studied by using a new RQMD
code, which is a covariant generalization of the QMD approach. We show that
this new implementation is able to produce the same results in the
nonrelativistic limit (i.e. 50MeV/nucl.) as the non-covariant QMD. Such a
comparison is not available in the literature. At higher energies (i.e. 1.5
GeV/nucl. and 2 GeV/nucl.) RQMD and QMD give different results in respect to
the time evolution of the phase space, for example for the directed transverse
flow. These differences show that consequences of a covariant description of
heavy ion reactions within the framework of RQMD are existing even at
intermediate energies.Comment: LaTex-file, 28 pages, 8 figures (available upon request), accepted
for publication in Physical Review
PERFORMANCE ANALISYS IN PROFESIONAL ICE HOCKEY: USING TRACKING DATA TO COMBINE TACTICAL AND PHYSIOLOGICAL ANALYSIS
Conference poste
Bird Movement Predicts Buggy Creek Virus Infection in Insect Vectors
Predicting the spatial foci of zoonotic diseases is a major challenge for epidemiologists and disease ecologists. Migratory birds are often thought to be responsible for introducing some aviozoonotic pathogens such as West Nile and avian influenza viruses to a local area, but most information on how bird movement correlates with virus prevalence is anecdotal or indirect. We report that the prevalence of Buggy Creek virus (BCRV) infection in cimicid swallow bugs (Oeciacus vicarius), the principal invertebrate vector for this virus, was directly associated with the likelihood of movement by cliff swallows (Petrochelidon pyrrhonota), an amplifying host for the virus, between nesting colonies. The prevalence of BCRV in bugs was also directly correlated with the number of swallows immigrating into a site. Birds that move into a site are often transient individuals that may have more often encountered virus elsewhere. These results indicate that the magnitude and direction of daily bird movement in a local area can accurately predict transmission foci for this virus and provide rare quantitative evidence that birds can play a critical role in the dispersal of certain vector-borne viruses
Effective Values of Komar Conserved Quantities and Their Applications
We calculate the effective Komar angular momentum for the Kerr-Newman (KN)
black hole. This result is valid at any radial distance on and outside the
black hole event horizon. The effcetive values of mass and angular momentum are
then used to derive an identity () which relates the Komar
conserved charge () corresponding to the null Killing vector
() with the thermodynamic quantities of this black hole. As an
application of this identity the generalised Smarr formula for this black hole
is derived. This establishes the fact that the above identity is a local form
of the inherently non-local generalised Smarr formula.Comment: v3, minor modifications over v2; LaTex, 9 pages, no figures, to
appear in Int. Jour. Theo. Phy
Bird Movement Predicts Buggy Creek Virus Infection in Insect Vectors
Predicting the spatial foci of zoonotic diseases is a major challenge for epidemiologists and disease ecologists. Migratory birds are often thought to be responsible for introducing some aviozoonotic pathogens such as West Nile and avian influenza viruses to a local area, but most information on how bird movement correlates with virus prevalence is anecdotal or indirect. We report that the prevalence of Buggy Creek virus (BCRV) infection in cimicid swallow bugs (Oeciacus vicarius), the principal invertebrate vector for this virus, was directly associated with the likelihood of movement by cliff swallows (Petrochelidon pyrrhonota), an amplifying host for the virus, between nesting colonies. The prevalence of BCRV in bugs was also directly correlated with the number of swallows immigrating into a site. Birds that move into a site are often transient individuals that may have more often encountered virus elsewhere. These results indicate that the magnitude and direction of daily bird movement in a local area can accurately predict transmission foci for this virus and provide rare quantitative evidence that birds can play a critical role in the dispersal of certain vector-borne viruses
- …