7 research outputs found

    Evolving role of radiotracers in coastal zone studies

    No full text
    Recent advances in the off-shore radiotracing program in the Asia Pacific region are described with examples from the Philippines, Thailand, Hong Kong and Australia. Advances are driven by changing requirements from the user community which include: (1) the need to experimentally evaluate the output of numerical models underpinning engineering and environmental investigations; (2) the need to address increasingly sophisticated questions posed by researchers into coastal ecosystems; and (3) the need to respond to pressures from regulators to minimise the level of tracer released to the environment. Four stages in the recent evolution of tracer technology are identified. © 2003, Elsevier Ltd

    Identification of genetic risk loci and causal insights associated with Parkinson\u27s disease in African and African admixed populations: a genome-wide association study

    No full text
    \ua9 2023 Elsevier LtdBackground: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson\u27s disease in these underserved populations. Methods: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson\u27s disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson\u27s Genetics Program, the International Parkinson\u27s Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson\u27s disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. Findings: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson\u27s disease (overall meta-analysis odds ratio for risk of Parkinson\u27s disease 1\ub758 [95% CI 1\ub737–1\ub780], p=2\ub7397 7 10−14) and age at onset at the GBA1 locus, rs3115534-G (age at onset β=–2\ub700 [SE=0\ub757], p=0\ub70005, for African ancestry; and β=–4\ub715 [0\ub758], p=0\ub7015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. Interpretation: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson\u27s disease in African populations. This population-specific variant exerts substantial risk on Parkinson\u27s disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson\u27s disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson\u27s disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson\u27s disease. Funding: The Global Parkinson\u27s Genetics Program, which is funded by the Aligning Science Across Parkinson\u27s initiative, and The Michael J Fox Foundation for Parkinson\u27s Research

    Publications

    No full text
    corecore