221 research outputs found

    Mask-aligner Talbot lithography using a 193nm CW light source

    Get PDF

    Calculating WCET Estimates from Timed Traces

    Get PDF
    © The Author(s) 2015. This article is published with open access at Springerlink.comReal-time systems engineers face a daunting duty: They must ensure that each task in their system can always meet its deadline. To analyse schedulability they must know the worst-case execution time (WCET) of each task. However, determining exact WCETs is practically infeasible in cost-constrained industrial settings involving real-life code and COTS hardware. Static analysis tools that could yield sufficiently tight WCET bounds are often unavailable. As a result, interest in portable analysis approaches like measurement-based timing analysis (MBTA) is growing. We present an approach based on integer linear programming (ILP) for calculating a WCET estimate from a given database of timed execution traces. Unlike previous work, our method specifically aims at reducing overestimation, by means of an automatic classification of code executions into scenarios with differing worst-case behaviour. To ease the integration into existing analysis tool chains, our method is based on the implicit path enumeration technique (IPET). It can thus reuse flow facts from other analysis tools and produces ILP problems that can be solved by off-the-shelf solvers.Peer reviewe

    HOCl chemistry in the Antarctic stratospheric vortex 2002, as observed with the Michelson interferometer for passive atmospheric sounding (MIPAS)

    Get PDF
    In the 2002 Antarctic polar vortex enhanced HOCl mixing ratios were detected by the Michelson Interferometer for Passive Atmospheric Sounding both at altitudes of around 35 km (1000K potential temperature), where HOCl abundances are ruled by gas phase chemistry and at around 18–24 km (475–625 K), which belongs to the altitude domain where heterogeneous chlorine chemistry is relevant. At altitudes of 33 to 40 km polar vortex HOCl mixing ratios were found to be around 0.14 ppbv as long as the polar vortex was intact, centered at the pole, and thus received relatively little sunlight. This is the altitude region where in midlatitudinal and tropic atmospheres peak HOCl mixing ratios significantly above 0.2 ppbv (in terms of daily mean values) are observed. After deformation and displacement of the polar vortex in the course of a major warming, ClO-rich vortex air was more exposed to sunlight, where enhanced HOx abundances led to largely increased HOCl mixing ratios (up to 0.3 ppbv), exceeding typical midlatitudinal and tropical amounts significantly. The HOCl increase was preceded by an increase of ClO. Model runs could reproduce these measurements only when the Stimpfle et al. (1979) rate constant for the reaction ClO+HO2→HOCl+O2 was used but not with the current JPL recommendation. At an altitude of 24 km, HOCl mixing ratios of up to 0.15 ppbv were detected. This HOCl enhancement, which is already visible in 18 September data, is attributed to heterogeneous chemistry, which is in agreement with observations of polar stratospheric clouds. The measurements were compared to a model run where no polar stratospheric clouds appeared during the observation period. The fact that HOCl still was produced in the model run suggests that a significant part of HOCl was generated from ClO rather than directly via heterogeneous reaction. Excess ClO, lower ClONO2 and earlier loss of HOCl in the measurements are attributed to ongoing heterogeneous chemistry which is not reproduced by the model. On 11 October, polar vortex mean daytime mixing ratios were only 0.03 ppbv

    On-off switch of charge-separated states of pyridine-vinylene-linked porphyrin-C60 conjugates detected by EPR

    Get PDF
    The design, synthesis, and electronic properties of a new series of D–π–A conjugates consisting of free base (H2P) and zinc porphyrins (ZnP) as electron donors and a fullerene (C60) as electron acceptor, in which the two electroactive entities are covalently linked through pyridine-vinylene spacers of different lengths, are described. Electronic interactions in the ground state were characterized by electrochemical and absorption measurements, which were further supported with theoretical calculations. Most importantly, charge-transfer bands were observed in the absorption spectra, indicating a strong push–pull behavior. In the excited states, electronic interactions were detected by selective photoexcitation under steady-state conditions, by time-resolved fluorescence investigations, and by pump probe experiments on the femto-, pico-, and nanosecond time scales. Porphyrin fluorescence is quenched for the different D–π–A conjugates, from which we conclude that the deactivation mechanisms of the excited singlet states are based on photoinduced energy- and/or electron transfer processes between H2P/ZnP and C60, mediated through the molecular spacers. The fluorescence intensity decreases and the fluorescence lifetimes shorten as the spacer length decreases and as the spacer substitution changes. With the help of transient absorption spectroscopy, the formation of charge-separated states involving oxidized H2P/ZnP and reduced C60 was confirmed. Lifetimes of the corresponding charge-separated states, which ranged from ∌400 picoseconds to 165 nanoseconds, depend on the spacer length, the spacer substitution, and the solvent polarity. Interestingly, D–π–A conjugates containing the longest linkers did not necessarily exhibit the longest charge-separated state lifetimes. The distances between the electron donors and the acceptors were calculated by molecular modelling. The longest charge-separated state lifetime corresponded to the D–π–A conjugate with the longest electron donor–acceptor distance. Likewise, EPR measurements in frozen media revealed charge separated states in all the D–π–A conjugates investigated. A sharp peak with g values ∌2.000 was assigned to reduced C60, while a broader, less intense signal (g ∌ 2.003) was assigned to oxidized H2P/ZnP. On–off switching of the formation and decay of the charge-separated states was detected by EPR at 77 K by repeatedly turning the irradiation source on and off

    Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

    Get PDF
    The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard CH4 emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15 ppbv reduction in the CH4 mixing ratio in 2010, which represents 7%–20% of the model-simulated CH4 increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a CH4 mixing ratio uncertainty of > 30 ppbv. Over the full 2000–2016 time period, using a common stateof- the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions
    • 

    corecore