300 research outputs found

    Molecular surveillance of Plasmodium vivax dhfr and dhps mutations in isolates from Afghanistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of dihydrofolate reductase (<it>dhfr</it>) and dihydropteroate synthase (<it>dhps</it>) mutations in <it>Plasmodium vivax </it>wild isolates has been considered to be a valuable molecular approach for mapping resistance to sulphadoxine-pyrimethamine (SP). The present study investigates the frequency of SNPs-haplotypes in the <it>dhfr </it>and <it>dhps </it>genes in <it>P. vivax </it>clinical isolates circulating in two malaria endemic areas in Afghanistan.</p> <p>Methods</p> <p><it>P. vivax </it>clinical isolates (n = 171) were collected in two different malaria endemic regions in north-west (Herat) and east (Nangarhar) Afghanistan in 2008. All collected isolates were analysed for SNP-haplotypes at positions 13, 33, 57, 58, 61, 117 and 173 of the <it>pvdhfr </it>and 383 and 553 of the <it>pvdhps </it>genes using PCR-RFLP methods.</p> <p>Results</p> <p>All 171 examined isolates were found to carry wild-type amino acids at positions 13, 33, 57, 61 and 173, while 58R and 117N mutations were detected among 4.1% and 12.3% of Afghan isolates, respectively. Based on the size polymorphism of <it>pvdhfr </it>genes at repeat region, type B was the most prevalent variant among Herat (86%) and Nangarhar (88.4%) isolates. Mixed genotype infections (type A/B and A/B/C) were detected in only 2.3% (2/86) of Herat and 1.2% (1/86) of Nangarhar isolates, respectively. The combination of <it>pvdhfr </it>and <it>pvdhps </it>haplotypes among all 171 samples demonstrated six distinct haplotypes. The two most prevalent haplotypes among all examined samples were wild-type (86%) and single mutant haplotype I<sub>13</sub>P<sub>33</sub>F<sub>57</sub>S<sub>58</sub>T<sub>61</sub><b>N </b><sub>117</sub>I<sub>173/</sub>A<sub>383</sub>A<sub>553 </sub>(6.4%).</p> <p>Double (I<sub>13</sub>P<sub>33</sub>S<sub>57</sub><b>R</b><sub>58</sub>T<sub>61</sub><b>N</b><sub>117</sub>I<sub>173</sub>/A<sub>383</sub>A<sub>553</sub>) and triple mutant haplotypes (I<sub>13</sub>P<sub>33</sub>S<sub>57</sub><b>R </b><sub>58</sub>T<sub>61</sub><b>N</b><sub>117</sub>I<sub>173</sub>/<b>G</b><sub>383</sub>A<sub>553</sub>) were found in 1.7% and 1.2% of Afghan isolates, respectively. This triple mutant haplotype was only detected in isolates from Herat, but in none of the Nangarhar isolates.</p> <p>Conclusion</p> <p>The present study shows a limited polymorphism in <it>pvdhfr </it>from Afghan isolates and provides important basic information to establish an epidemiological map of drug-resistant vivax malaria, and updating guidelines for anti-malarial policy in Afghanistan. The continuous usage of SP as first-line anti-malarial drug in Afghanistan might increase the risk of mutations in the <it>dhfr </it>and <it>dhps </it>genes in both <it>P. vivax </it>and <it>Plasmodium falciparum </it>isolates, which may lead to a complete SP resistance in the near future in this region. Therefore, continuous surveillance of <it>P. vivax </it>and <it>P. falciparum </it>molecular markers are needed to monitor the development of resistance to SP in the region.</p

    Evaluation of a service intervention to improve awareness and uptake of bowel cancer screening in ethnically-diverse areas

    Get PDF
    The Policy Research Unit in Cancer Awareness, Screening and Early Diagnosis receives funding for a research programme from the UK Department of Health Policy Research Programme (grant no. 106/0001). It is a collaboration between researchers from seven institutions (the Queen Mary University of London, the UCL, the King’s College London, the London School of Hygiene and Tropical Medicine, the Hull York Medical School, the Durham University and the Peninsula Medical School)

    Synthesis of Gallinamide A Analogues as Potent Falcipain Inhibitors and Antimalarials

    Get PDF
    Analogues of the natural product gallinamide A were prepared to elucidate novel inhibitors of the falcipain cysteine proteases. Analogues exhibited potent inhibition of falcipain-2 (FP-2) and falcipain-3 (FP-3) and of the development of Plasmodium falciparum in vitro. Several compounds were equipotent to chloroquine as inhibitors of the 3D7 strain of P. falciparum and maintained potent activity against the chloroquine-resistant Dd2 parasite. These compounds serve as promising leads for the development of novel antimalarial agents

    Sustainable adsorption method for the remediation of malachite green dye using nutraceutical industrial fenugreek seed spent

    Get PDF
    Nutraceutical industrial fenugreek seed spent (NIFGS), a relatively low-cost material abundantly available with nearly negligible toxicity for the bioremediation of malachite green (MG) dye from aqueous media, is reported. Studies on the various parameters affecting the adsorption capacity of NIFGS were carried out to evaluate the kinetics and the equilibrium thermodynamics. All the experiments were designed at about pH 7. The adsorption isotherm model proposed by Langmuir fits better than the Freundlich isotherm model. Kinetic study data confirms the viability of pseudo-second-order model. Calculated thermodynamic factors suggest that the adsorption phenomenon is endothermic, almost instantaneous, and physical in nature

    Defining Plasmodium falciparum Treatment in South West Asia: A Randomized Trial Comparing Artesunate or Primaquine Combined with Chloroquine or SP

    Get PDF
    INTRODUCTION: Antimalarial resistance has led to a global policy of artemisinin-based combination therapy. Despite growing resistance chloroquine (CQ) remained until recently the official first-line treatment for falciparum malaria in Pakistan, with sulfadoxine-pyrimethamine (SP) second-line. Co-treatment with the gametocytocidal primaquine (PQ) is recommended for transmission control in South Asia. The relative effect of artesunate (AS) or primaquine, as partner drugs, on clinical outcomes and gametocyte carriage in this setting were unknown. METHODS: A single-blinded, randomized trial among Afghan refugees in Pakistan compared six treatment arms: CQ; CQ+(single-dose)PQ; CQ+(3 d)AS; SP; SP+(single-dose)PQ, and SP+(3 d)AS. The objectives were to compare treatment failure rates and effect on gametocyte carriage, of CQ or SP monotherapy against the respective combinations (PQ or AS). Outcomes included trophozoite and gametocyte clearance (read by light microscopy), and clinical and parasitological failure. FINDINGS: A total of 308 (87%) patients completed the trial. Failure rates by day 28 were: CQ 55/68 (81%); CQ+AS 19/67 (28%), SP 4/41 (9.8%), SP+AS 1/41 (2.4%). The addition of PQ to CQ or SP did not affect failure rates (CQ+PQ 49/67 (73%) failed; SP+PQ 5/33 (16%) failed). AS was superior to PQ at clearing gametocytes; gametocytes were seen on d7 in 85% of CQ, 40% of CQ+PQ, 21% of CQ+AS, 91% of SP, 76% of SP+PQ and 23% of SP+AS treated patients. PQ was more effective at clearing older gametocyte infections whereas AS was more effective at preventing emergence of mature gametocytes, except in cases that recrudesced. CONCLUSIONS: CQ is no longer appropriate by itself or in combination. These findings influenced the replacement of CQ with SP+AS for first-line treatment of uncomplicated falciparum malaria in the WHO Eastern Mediterranean Region. The threat of SP resistance remains as SP monotherapy is still common. Three day AS was superior to single-dose PQ for reducing gametocyte carriage. TRIAL REGISTRATION: ClinicalTrials.gov NCT00959517

    Detection of high levels of mutations involved in anti-malarial drug resistance in Plasmodium falciparum and Plasmodium vivax at a rural hospital in southern Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Ethiopia, malaria is caused by <it>Plasmodium falciparum </it>and <it>Plasmodium vivax</it>, and anti-malarial drug resistance is the most pressing problem confronting control of the disease. Since co-infection by both species of parasite is common and sulphadoxine-pyrimethamine (SP) has been intensively used, resistance to these drugs has appeared in both <it>P. falciparum </it>and <it>P. vivax </it>populations. This study was conducted to assess the prevalence of anti-malarial drug resistance in <it>P. falciparum </it>and <it>P. vivax </it>isolates collected at a rural hospital in southern Ethiopia.</p> <p>Methods</p> <p>A total of 1,147 patients with suspected malaria were studied in different months across the period 2007-2009. <it>Plasmodium falciparum dhfr </it>and <it>dhps </it>mutations and <it>P. vivax dhfr </it>polymorphisms associated with resistance to SP, as well as <it>P. falciparum pfcrt </it>and <it>pfmdr1 </it>mutations conferring chloroquine resistance, were assessed.</p> <p>Results</p> <p>PCR-based diagnosis showed that 125 of the 1147 patients had malaria. Of these, 52.8% and 37.6% of cases were due to <it>P. falciparum </it>and <it>P. vivax </it>respectively. A total of 10 cases (8%) showed co-infection by both species and two cases (1.6%) were infected by <it>Plasmodium ovale</it>. <it>Pfdhfr </it>triple mutation and <it>pfdhfr/pfdhps </it>quintuple mutation occurred in 90.8% (95% confidence interval [CI]: 82.2%-95.5%) and 82.9% (95% CI: 72.9%-89.7%) of <it>P. falciparum </it>isolates, respectively. <it>Pfcrt </it>T76 was observed in all cases and <it>pfmdr1 </it>Y86 and <it>pfmdr1 </it>Y1246 in 32.9% (95% CI: 23.4%-44.15%) and 17.1% (95% CI: 10.3-27.1%), respectively. The <it>P. vivax dhfr </it>core mutations, N117 and R58, were present in 98.2% (95% CI: 89.4-99.9%) and 91.2% (95% CI: 80.0-96.7%), respectively.</p> <p>Conclusion</p> <p>Current molecular data show an extraordinarily high frequency of drug-resistance mutations in both <it>P. falciparum </it>and <it>P. vivax </it>in southern Ethiopia. Urgent surveillance of the emergence and spread of resistance is thus called for. The level of resistance indicates the need for implementation of entire population access to the new first-line treatment with artemether-lumefantrine, accompanied by government monitoring to prevent the emergence of resistance to this treatment.</p

    Riverine plastic pollution from fisheries: Insights from the Ganges River system

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordAbandoned, lost or otherwise discarded fishing gear represents a substantial proportion of global marine plastic pollution and can cause significant environmental and socio-economic impacts. Yet little is known about its presence in, and implications for, freshwater ecosystems or its downstream contribution to plastic pollution in the ocean. This study documents fishing gear-related debris in one of the world's largest plastic pollution contributing river catchments, the Ganges. Riverbank surveys conducted along the length of the river, from the coast in Bangladesh to the Himalaya in India, show that derelict fishing gear density increases with proximity to the sea. Fishing nets were the main gear type by volume and all samples examined for polymer type were plastic. Illegal gear types and restricted net mesh sizes were also recorded. Socio-economic surveys of fisher communities explored the behavioural drivers of plastic waste input from one of the world's largest inland fisheries and revealed short gear lifespans and high turnover rates, lack of appropriate end-of-life gear disposal methods and ineffective fisheries regulations. A biodiversity threat assessment identified the air-breathing aquatic vertebrate species most at risk of entanglement in, and impacts from, derelict fishing gear; namely species of threatened freshwater turtle and otter, and the endangered Ganges river dolphin. This research demonstrates a need for targeted and practical interventions to limit the input of fisheries-related plastic pollution to this major river system and ultimately, the global ocean. The approach used in this study could be replicated to examine the inputs, socio-economic drivers and ecological impacts of this previously uncharacterised but important source of plastic pollution in other major rivers worldwide.European CommissionEngineering and Physical Sciences Research Council (EPSRC
    corecore