887 research outputs found
Double Giant Dipole Resonance in ^{208}Pb
Double-dipole excitations in ^{208}Pb are analyzed within a microscopic model
explicitly treating 2p2h-excitations. Collective states built from such
2p2h-excitations are shown to appear at about twice the energy of the isovector
giant dipole resonance, in agreement with the experimental findings. The
calculated cross section for Coulomb excitation at relativistic energies cannot
explain simultaneously the measured single-dipole and double-dipole cross
sections, however.Comment: 7 pages, Latex, 5 postscript figure
Region of hadron-quark mixed phase in hybrid stars
Hadron--quark mixed phase is expected in a wide region of the inner structure
of hybrid stars. However, we show that the hadron--quark mixed phase should be
restricted to a narrower region to because of the charge screening effect. The
narrow region of the mixed phase seems to explain physical phenomena of neutron
stars such as the strong magnetic field and glitch phenomena, and it would give
a new cooling curve for the neutron star.Comment: to be published in Physical Review
Intermediate energy Coulomb excitation as a probe of nuclear structure at radioactive beam facilities
The effects of retardation in the Coulomb excitation of radioactive nuclei in
intermediate energy collisions (Elab ~100 MeV/nucleon) are investigated. We
show that the excitation cross sections of low-lying states in 11Be,
{38,40,42}S and {44,46}Ar projectiles incident on gold and lead targets are
modified by as much as 20% due to these effects. The angular distributions of
decaying gamma-rays are also appreciably modified.Comment: 21 pages, 3 figures, Phys. Rev. C, in pres
Anharmonicities of giant dipole excitations
The role of anharmonic effects on the excitation of the double giant dipole
resonance is investigated in a simple macroscopic model.Perturbation theory is
used to find energies and wave functions of the anharmonic ascillator.The cross
sections for the electromagnetic excitation of the one- and two-phonon giant
dipole resonances in energetic heavy-ion collisions are then evaluated through
a semiclassical coupled-channel calculation.It is argued that the variations of
the strength of the anharmonic potential should be combined with appropriate
changes in the oscillator frequency,in order to keep the giant dipole resonance
energy consistent with the experimental value.When this is taken into
account,the effects of anharmonicities on the double giant dipole resonance
excitation probabilities are small and cannot account for the well-known
discrepancy between theory and experiment
Medical Data Architecture Project Status
The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically-relevant information to support medical operations during exploration missions. This gap identifies that the current in-flight medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are a variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable a more medically autonomous crew than the current paradigm. The medical system requirements are being developed in parallel with the exploration mission architecture and vehicle design. ExMC has recognized that in order to make informed decisions about a medical data architecture framework, current methods for medical data management must not only be understood, but an architecture must also be identified that provides the crew with actionable insight to medical conditions. This medical data architecture will provide the necessary functionality to address the challenges of executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. Hence, the products supported by current prototype development will directly inform exploration medical system requirements
Extent of Low-accumulation 'Wind Glaze' Areas on the East Antarctic Plateau: Implications for Continental Ice Mass Balance
Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze
Nonlinear Enhancement of the Multiphonon Coulomb Excitation in Relativistic Heavy Ion Collisions
We propose a soluble model to incorporate the nonlinear effects in the
transition probabilities of the multiphonon Giant Dipole Resonances based on
the SU(1,1) algebra. Analytical expressions for the multi-phonon transition
probabilities are derived. Enhancement of the Double Giant Resonance excitation
probabilities in relativistic ion collisions scales as for
the degree of nonlinearity and is able to reach values
compatible with experimental data. The enhancement factor is found to decrease
with increasing bombarding energy. [KEYWORDS: Relativistic Heavy Ion
Collisions,Double Giant Resonance]Comment: 12 pages, 2 figure
Theory of Multiphonon Excitation in Heavy-Ion Collisions
We study the effects of channel coupling in the excitation dynamics of giant
resonances in relativistic heavy ions collisions. For this purpose, we use a
semiclassical approximation to the Coupled-Channels problem and separate the
Coulomb and the nuclear parts of the coupling into their main multipole
components. In order to assess the importance of multi-step processes, we
neglect the resonance widths and solve the set of coupled equations exactly.
Finite widths are then considered. In this case, we handle the coupling of the
ground state with the dominant Giant Dipole Resonance exactly and study the
excitation of the remaining resonances within the Coupled-Channels Born
Approximation. A comparison with recent experimental data is made.Comment: 29 pages, 7 Postscript figures available upon reques
- …