79 research outputs found

    The Lateral Habenula Circuitry: Reward Processing and Cognitive Control

    Get PDF
    There has been a growing interest in understanding the role of the lateral habenula (LHb) in reward processing, affect regulation, and goal-directed behaviors. The LHb gets major inputs from the habenula-projecting globus pallidus and the mPFC, sending its efferents to the dopaminergic VTA and SNc, serotonergic dorsal raphe nuclei, and the GABAergic rostromedial tegmental nucleus. Recent studies have made advances in our understanding of the LHb circuit organization, yet the precise mechanisms of its involvement in complex behaviors are largely unknown. To begin to address this unresolved question, we present here emerging cross-species perspectives with a goal to provide a more refined understanding of the role of the LHb circuits in reward and cognition. We begin by highlighting recent findings from rodent experiments using optogenetics, electrophysiology, molecular, pharmacology, and tracing techniques that reveal diverse neural phenotypes in the LHb circuits that may underlie previously undescribed behavioral functions. We then discuss results from electrophysiological studies in macaques that suggest that the LHb cooperates with the anterior cingulate cortex to monitor action outcomes and signal behavioral adjustment. Finally, we provide an integrated summary of cross-species findings and discuss how further research on the connectivity, neural signaling, and physiology of the LHb circuits can deepen our understanding of the role of the LHb in normal and maladaptive behaviors associated with mental illnesses and drug abuse

    Arase Observation of the Source Region of Auroral Arcs and Diffuse Auroras in the Inner Magnetosphere

    Get PDF
    Auroral arcs and diffuse auroras are common phenomena at high latitudes, though characteristics of their source plasma and fields have not been well understood. We report the first observation of fields and particles including their pitch‐angle distributions in the source region of auroral arcs and diffuse auroras, using data from the Arase satellite at L ~ 6.0–6.5. The auroral arcs appeared and expanded both poleward and equatorward at local midnight from ~0308 UT on 11 September 2018 at Nain (magnetic latitude: 66°), Canada, during the expansion phase of a substorm, while diffuse auroras covered the whole sky after 0348 UT. The top part of auroral arcs was characterized by purple/blue emissions. Bidirectional field‐aligned electrons with structured energy‐time spectra were observed in the source region of auroral arcs, while source electrons became isotropic and less structured in the diffuse auroral region afterwards. We suggest that structured bidirectional electrons at energies below a few keV were caused by upward field‐aligned potential differences (upward electric field along geomagnetic field) reaching high altitudes (~30,000 km) above Arase. The bidirectional electrons above a few keV were probably caused by Fermi acceleration associated with the observed field dipolarization. Strong electric‐field fluctuations and earthward Poynting flux were observed at the arc crossing and are probably also caused by the field dipolarization. The ions showed time‐pitch‐angle dispersion caused by mirror reflection. These results indicate a clear contrast between auroral arcs and diffuse auroras in terms of source plasma and fields and generation mechanisms of auroral arcs in the inner magnetosphere

    Input-specific control of reward and aversion in the ventral tegmental area

    Get PDF
    Ventral tegmental area (VTA) dopamine neurons have important roles in adaptive and pathological brain functions related to reward and motivation. However, it is unknown whether subpopulations of VTA dopamine neurons participate in distinct circuits that encode different motivational signatures, and whether inputs to the VTA differentially modulate such circuits. Here we show that, because of differences in synaptic connectivity, activation of inputs to the VTA from the laterodorsal tegmentum and the lateral habenula elicit reward and aversion in mice, respectively. Laterodorsal tegmentum neurons preferentially synapse on dopamine neurons projecting to the nucleus accumbens lateral shell, whereas lateral habenula neurons synapse primarily on dopamine neurons projecting to the medial prefrontal cortex as well as on GABAergic (γ-aminobutyric-acid-containing) neurons in the rostromedial tegmental nucleus. These results establish that distinct VTA circuits generate reward and aversion, and thereby provide a new framework for understanding the circuit basis of adaptive and pathological motivated behaviours.National Institutes of Health (U.S.) (Grant NIH NS069375)JPB FoundationNational Institute of Mental Health (U.S.

    Mesopontine rostromedial tegmental nucleus neurons projecting to the dorsal raphe and pedunculopontine tegmental nucleus: psychostimulant-elicited Fos expression and collateralization

    Get PDF
    The mesopontine rostromedial tegmental nucleus (RMTg) is a GABAergic structure in the ventral midbrain and rostral pons that, when activated, inhibits dopaminergic neurons in the ventral tegmental area and substantia nigra compacta. Additional strong outputs from the RMTg to the pedunculopontine tegmental nucleus pars dissipata, dorsal raphe nucleus, and the pontomedullary gigantocellular reticular formation were identified by anterograde tracing. RMTg neurons projecting to the ventral tegmental area express the immediate early gene Fos upon psychostimulant administration. The present study was undertaken to determine if neurons in the RMTg that project to the additional structures listed above also express Fos upon psychostimulant administration and, if so, whether single neurons in the RMTg project to more than one of these structures. We found that about 50% of RMTg neurons exhibiting retrograde labeling after injections of retrograde tracer in the dorsal raphe or pars dissipata of the pedunculopontine tegmental nucleus express Fos after acute methamphetamine exposure. Also, we observed that a significant number of RMTg neurons project both to the ventral tegmental area and one of these structures. In contrast, methamphetamine-elicited Fos expression was not observed in RMTg neurons labeled with retrograde tracer following injections into the pontomedullary reticular formation. The findings suggest that the RMTg is an integrative modulator of multiple rostrally projecting structures

    Neural dynamics of shooting decisions and the switch from freeze to fight

    Get PDF
    Real-life shooting decisions typically occur under acute threat and require fast switching between vigilant situational assessment and immediate fight-or-flight actions. Recent studies suggested that freezing facilitates action preparation and decision-making but the neurocognitive mechanisms remain unclear. We applied functional magnetic resonance imaging, posturographic and autonomic measurements while participants performed a shooting task under threat of shock. two independent studies, in unselected civilians (N = 22) and police recruits (N = 54), revealed that preparation for shooting decisions under threat is associated with postural freezing, bradycardia, midbrain activity (including the periaqueductal gray-PAG) and PAG-amygdala connectivity. Crucially, stronger activity in the midbrain/pAG during this preparatory stage of freezing predicted faster subsequent accurate shooting. Finally, the switch from preparation to active shooting was associated with tachycardia, perigenual anterior cingulate cortex (pgACC) activity and pgACC-amygdala connectivity. These findings suggest that threat-anticipatory midbrain activity centred around the PAG supports decision-making by facilitating action preparation and highlight the role of the pgACC when switching from preparation to action. These results translate animal models of the neural switch from freeze-to-action. In addition, they reveal a core neural circuit for shooting performance under threat and provide empirical evidence for the role of defensive reactions such as freezing in subsequent action decision-making

    Neural Substrate of Cold-Seeking Behavior in Endotoxin Shock

    Get PDF
    Systemic inflammation is a leading cause of hospital death. Mild systemic inflammation is accompanied by warmth-seeking behavior (and fever), whereas severe inflammation is associated with cold-seeking behavior (and hypothermia). Both behaviors are adaptive. Which brain structures mediate which behavior is unknown. The involvement of hypothalamic structures, namely, the preoptic area (POA), paraventricular nucleus (PVH), or dorsomedial nucleus (DMH), in thermoregulatory behaviors associated with endotoxin (lipopolysaccharide [LPS])-induced systemic inflammation was studied in rats. The rats were allowed to select their thermal environment by freely moving in a thermogradient apparatus. A low intravenous dose of Escherichia coli LPS (10 µg/kg) caused warmth-seeking behavior, whereas a high, shock-inducing dose (5,000 µg/kg) caused cold-seeking behavior. Bilateral electrocoagulation of the PVH or DMH, but not of the POA, prevented this cold-seeking response. Lesioning the DMH with ibotenic acid, an excitotoxin that destroys neuronal bodies but spares fibers of passage, also prevented LPS-induced cold-seeking behavior; lesioning the PVH with ibotenate did not affect it. Lesion of no structure affected cold-seeking behavior induced by heat exposure or by pharmacological stimulation of the transient receptor potential (TRP) vanilloid-1 channel (“warmth receptor”). Nor did any lesion affect warmth-seeking behavior induced by a low dose of LPS, cold exposure, or pharmacological stimulation of the TRP melastatin-8 (“cold receptor”). We conclude that LPS-induced cold-seeking response is mediated by neuronal bodies located in the DMH and neural fibers passing through the PVH. These are the first two landmarks on the map of the circuitry of cold-seeking behavior associated with endotoxin shock

    Coping with unpredictability: Dopaminergic and neurotrophic responses to omission of expected reward in Atlantic salmon (Salmo salar L.).

    Get PDF
    Comparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward') causes increased aggression in Atlantic salmon (Salmo salar). Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF) and dopamine receptor mRNA transcripts in the same paradigm. Groups of fish were initially conditioned to associate a flashing light with feeding. Subsequently, the expected food reward was delayed for 30 minutes during two out of three meals per day in the OER treatment, while the previously established routine was maintained in control groups. After 8 days there was no effect of OER on baseline brain stem serotonin (5-HT) or dopamine (DA) activity. Subsequent exposure to acute confinement stress led to increased plasma cortisol and elevated turnover of brain stem DA and 5-HT in all animals. The DA response was potentiated and DA receptor 1 (D1) mRNA abundance was reduced in the OER-exposed fish, indicating a sensitization of the DA system. In addition OER suppressed abundance of BDNF in the telencephalon of non-stressed fish. Regardless of OER treatment, a strong positive correlation between BDNF and D1 mRNA abundance was seen in non-stressed fish. This correlation was disrupted by acute stress, and replaced by a negative correlation between BDNF abundance and plasma cortisol concentration. These observations indicate a conserved link between DA, neurotrophin regulation, and corticosteroid-signaling pathways. The results also emphasize how fish models can be important tools in the study of neural plasticity and responsiveness to environmental unpredictability

    Neurodevelopmental Disruption of Cortico-Striatal Function Caused by Degeneration of Habenula Neurons

    Get PDF
    The habenula plays an important role on cognitive and affective functions by regulating monoamines transmission such as the dopamine and serotonin, such that its dysfunction is thought to underlie a number of psychiatric conditions. Given that the monoamine systems are highly vulnerable to neurodevelopmental insults, damages in the habenula during early neurodevelopment may cause devastating effects on the wide-spread brain areas targeted by monoamine innervations.Using a battery of behavioral, anatomical, and biochemical assays, we examined the impacts of neonatal damage in the habenula on neurodevelopmental sequelae of the prefrontal cortex (PFC) and nucleus accumbens (NAcc) and associated behavioral deficits in rodents. Neonatal lesion of the medial and lateral habenula by ibotenic acid produced an assortment of behavioral manifestations consisting of hyper-locomotion, impulsivity, and attention deficit, with hyper-locomotion and impulsivity being observed only in the juvenile period, whereas attention deficit was sustained up until adulthood. Moreover, these behavioral alterations were also improved by amphetamine. Our study further revealed that impulsivity and attention deficit were associated with disruption of PFC volume and dopamine (DA) receptor expression, respectively. In contrast, hyper-locomotion was associated with decreased DA transporter expression in the NAcc. We also found that neonatal administration of nicotine into the habenula of neonatal brains produced selective lesion of the medial habenula. Behavioral deficits with neonatal nicotine administration were similar to those caused by ibotenic acid lesion of both medial and lateral habenula during the juvenile period, whereas they were different in adulthood.Because of similarity between behavioral and brain alterations caused by neonatal insults in the habenula and the symptoms and suggested neuropathology in attention deficit/hyperactivity disorder (ADHD), these results suggest that neurodevelopmental deficits in the habenula and the consequent cortico-striatal dysfunctions may be involved in the pathogenesis and pathophysiology of ADHD
    corecore