3,140 research outputs found

    Computational Modeling Methods for Understanding the Interaction of Lignin and Its Derivatives with Oxidoreductases as Biocatalysts

    Get PDF
    This chapter will be presented as follow. First, a brief introduction to structure and characterization of lignin and its derivatives is presented, as well as their importance as chemical scaffolds for obtaining value-added products in chemical, food, pharmaceutical and agriculture industry. Second, an extensive review of different reports using computational modeling methods—like molecular dynamics simulations, quantum mechanics and hybrid calculation methods, among others—in the understanding of enzyme-substrate interaction and biocatalysis will be presented. Third, and as last part of chapter, some hand picked examples from literature will be chosen as successful cases where the interplay between experiment and computation has given as a result protein engineered oxidoreductases with improved catalytic capabilities

    Risk management and communication in informal dairy sector in Côte d’Ivoire: Options for sustainable livelihoods

    Get PDF
    Intervention in food and nutrition was the best investment for our collective future in terms of managing co-morbidity in population. This investment should combine agricultural system with health and education. Fermented dairy products (FDP) played an important role for prolonged shelf life, microbial safety and nutrition. FDP was proved to be contaminated in Kenya, Somalia, Mali and Côte d'Ivoire by foodborne pathogens including Staphylococcus aureus and Escherichia coli. Recently, it was showed that FDP was predominated by a novel Streptococcus infantarius subsp. infantarius (Sii) variant. Sii-produced bacteriocin and fermentation activity could contribute to the suppression of pathogens and possibly mitigate socioeconomic and health risks. However, Sii as member of Streptococcus bovis group was associated with human and animal infections. Therefore, a potential application of Sii as adapted African starter culture for enhanced food safety required a thorough safety assessment. In order to improve hygiene and quality as well as to increase production for school canteens, urban consumption and sustainable livelihoods, a cross-sectional study was conducted in Korhogo (Côte d’Ivoire) from May to August 2014. The objective was to assess local technologies and the dairy value chain in relation to Sii prevalence, followed by a participatory stakeholder workshop to validate findings and derive adapted interventions. The study showed that the dairy value chain contributed to livelihoods and household income. About 90% of milk produced (range: 12-44 liters/collector) were sold via collectors, generating 6-20 Euros per day shared among herder, collector and vendor. The remaining 10% were consumed within the household. However, dairy production was low and scattered due to informal practices resulting in poor quality product. Basic hygiene such as cleaning, washing, disinfecting was lacking. Milk quality depreciated with the local practices, access to clean water and energy. Future interventions identified by stakeholders comprised (i) awareness on local dairy hygiene and nutritional value for the population especially school children, (ii) stakeholders organization around cooperative to develop sustainable dairy model (public dairy with private management); (iii) promote healthy milk products for school canteen programme in Korhogo through adapted local dairy technology

    Brauer-Thrall for totally reflexive modules over local rings of higher dimension

    Full text link
    Let RR be a commutative Noetherian local ring. Assume that RR has a pair {x,y}\{x,y\} of exact zerodivisors such that dimR/(x,y)2\dim R/(x,y)\ge2 and all totally reflexive R/(x)R/(x)-modules are free. We show that the first and second Brauer--Thrall type theorems hold for the category of totally reflexive RR-modules. More precisely, we prove that, for infinitely many integers nn, there exists an indecomposable totally reflexive RR-module of multiplicity nn. Moreover, if the residue field of RR is infinite, we prove that there exist infinitely many isomorphism classes of indecomposable totally reflexive RR-modules of multiplicity nn.Comment: to appear in Algebras and Representation Theor

    Performance of the LHCb Vertex Detector Alignment Algorithm determined with Beam Test Data

    Full text link
    LHCb is the dedicated heavy flavour experiment at the Large Hadron Collider at CERN. The partially assembled silicon vertex locator (VELO) of the LHCb experiment has been tested in a beam test. The data from this beam test have been used to determine the performance of the VELO alignment algorithm. The relative alignment of the two silicon sensors in a module and the relative alignment of the modules has been extracted. This alignment is shown to be accurate at a level of approximately 2 micron and 0.1 mrad for translations and rotations, respectively in the plane of the sensors. A single hit precision at normal track incidence of about 10 micron is obtained for the sensors. The alignment of the system is shown to be stable at better than the 10 micron level under air to vacuum pressure changes and mechanical movements of the assembled system.Comment: accepted for publication in NIM

    An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ

    Get PDF
    Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow

    Radiation damage in the LHCb vertex locator

    Get PDF
    The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately 45 × 1012 1 MeV neutron equivalent (1 MeV neq). At the operational sensor temperature of approximately −7 °C, the average rate of sensor current increase is 18 μA per fb−1, in excellent agreement with predictions. The silicon effective bandgap has been determined using current versus temperature scan data after irradiation, with an average value of Eg = 1.16±0.03±0.04 eV obtained. The first observation of n+-on-n sensor type inversion at the LHC has been made, occurring at a fluence of around 15 × 1012 of 1 MeV neq. The only n+-on-p sensors in use at the LHC have also been studied. With an initial fluence of approximately 3 × 1012 1 MeV neq, a decrease in the Effective Depletion Voltage (EDV) of around 25 V is observed. Following this initial decrease, the EDV increases at a comparable rate to the type inverted n+-on-n type sensors, with rates of (1.43±0.16) × 10−12 V/ 1 MeV neq and (1.35±0.25) × 10−12 V/ 1 MeV neq measured for n+-on-p and n+-on-n type sensors, respectively. A reduction in the charge collection efficiency due to an unexpected effect involving the second metal layer readout lines is observed

    Precision luminosity measurements at LHCb

    Get PDF
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c
    corecore