464 research outputs found
Distinct patterns of thought mediate the link between brain functional connectomes and well-being
Ongoing thought patterns constitute important aspects of both healthy and abnormal human cognition. However, the neural mechanisms behind these daily experiences and their contribution to well-being remain a matter of debate. Here, using resting-state fMRI and retrospective thought sampling in a large neurotypical cohort (n = 211), we identified two distinct patterns of thought, broadly describing the participantsâ current concerns and future plans, that significantly explained variability in the individual functional connectomes. Consistent with the view that ongoing thoughts are an emergent property of multiple neural systems, network-based analysis highlighted the central importance of both unimodal and transmodal cortices in the generation of these experiences. Importantly, while state-dependent current concerns predicted better psychological health, mediating the effect of functional connectomes, trait-level future plans were related to better social health, yet with no mediatory influence. Collectively, we show that ongoing thoughts can influence the link between brain physiology and well-being
Recommended from our members
The LONI QC System: A Semi-Automated, Web-Based and Freely-Available Environment for the Comprehensive Quality Control of Neuroimaging Data.
Quantifying, controlling, and monitoring image quality is an essential prerequisite for ensuring the validity and reproducibility of many types of neuroimaging data analyses. Implementation of quality control (QC) procedures is the key to ensuring that neuroimaging data are of high-quality and their validity in the subsequent analyses. We introduce the QC system of the Laboratory of Neuro Imaging (LONI): a web-based system featuring a workflow for the assessment of various modality and contrast brain imaging data. The design allows users to anonymously upload imaging data to the LONI-QC system. It then computes an exhaustive set of QC metrics which aids users to perform a standardized QC by generating a range of scalar and vector statistics. These procedures are performed in parallel using a large compute cluster. Finally, the system offers an automated QC procedure for structural MRI, which can flag each QC metric as being 'good' or 'bad.' Validation using various sets of data acquired from a single scanner and from multiple sites demonstrated the reproducibility of our QC metrics, and the sensitivity and specificity of the proposed Auto QC to 'bad' quality images in comparison to visual inspection. To the best of our knowledge, LONI-QC is the first online QC system that uniquely supports the variety of functionality where we compute numerous QC metrics and perform visual/automated image QC of multi-contrast and multi-modal brain imaging data. The LONI-QC system has been used to assess the quality of large neuroimaging datasets acquired as part of various multi-site studies such as the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study and the Alzheimer's Disease Neuroimaging Initiative (ADNI). LONI-QC's functionality is freely available to users worldwide and its adoption by imaging researchers is likely to contribute substantially to upholding high standards of brain image data quality and to implementing these standards across the neuroimaging community
Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel
The refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, the refractive index contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving-parts approach that provides three-dimensional refractive-index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate refractive-index maps of the samples from the measured spectra. Using this method, we demonstrate label-free three-dimensional imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass, and density of these cells from the measured three-dimensional refractive-index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, shows promise as a quantitative tool for stain-free characterization of a large number of cells.National Institutes of Health (U.S.) (9P41EB015871-26A1)National Institutes of Health (U.S.) (P41 EB002503)Hamamatsu Corporatio
Metabolic adaptations in skeletal muscle after 84 days of bed rest with and without concurrent flywheel resistance exercise
As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n 9) or without (BR; n 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator- 1 (PGC-1 ), and myostatin, were analyzed in samples from m.vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1 and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle
Neutrophils self-limit swarming to contain bacterial growth in vivo
Neutrophils communicate with each other to form swarms in infected organs. Coordination of this population response is critical for the elimination of bacteria and fungi. Using transgenic mice, we found that neutrophils have evolved an intrinsic mechanism to self-limit swarming and avoid uncontrolled aggregation during inflammation. G proteinâcoupled receptor (GPCR) desensitization acts as a negative feedback control to stop migration of neutrophils when they sense high concentrations of self-secreted attractants that initially amplify swarming. Interference with this process allows neutrophils to scan larger tissue areas for microbes. Unexpectedly, this does not benefit bacterial clearance as containment of proliferating bacteria by neutrophil clusters becomes impeded. Our data reveal how autosignaling stops self-organized swarming behavior and how the finely tuned balance of neutrophil chemotaxis and arrest counteracts bacterial escape
Synthetic spatially graded Rac activation drives directed cell polarization and locomotion
Migrating cells possess intracellular gradients of Rho GTPases, but it is
unknown whether these shallow gradients themselves can induce motility. Here we
describe a new method to present cells with induced linear gradients of active,
endogenous Rac without receptor activation. Gradients as low as 15% were
sufficient to not only trigger cell migration up the synthetic gradient, but
also to induce both cell polarization and repolarization. Response kinetics
were inversely proportional to Rac gradient values, in agreement with a new
mathematical model, suggesting a role for natural input gradient amplification
upstream of Rac. Increases in Rac levels beyond a well-defined threshold
dramatically augmented polarization and decreased sensitivity to the gradient
value. The threshold was governed by initial cell polarity and PI3K activity,
supporting a role for both in defining responsiveness to natural or synthetic
Rac activation. Our methodology suggests a general way to investigate processes
regulated by intracellular signaling gradients
A Highly Conserved Program of Neuronal Microexons Is Misregulated in Autistic Brains
SummaryAlternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide âmicroexonsâ display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism
Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation
The plasmon oscillations of a metallic triaxial ellipsoid nanoparticle have
been studied within the framework of the quasistatic approximation. A general
method has been proposed for finding the analytical expressions describing the
potential and frequencies of the plasmon oscillations of an arbitrary
multipolarity order. The analytical expressions have been derived for an
electric potential and plasmon oscillation frequencies of the first 24 modes.
Other higher orders plasmon modes are investigated numerically.Comment: 33 pages, 12 figure
Evolutionary Convergence on Highly-Conserved 3ⲠIntron Structures in Intron-Poor Eukaryotes and Insights into the Ancestral Eukaryotic Genome
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3Ⲡconsensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3Ⲡsplice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures
- âŚ