531 research outputs found

    Constraints on WIMP Dark Matter from the High Energy PAMELA pˉ/p\bar{p}/p data

    Get PDF
    A new calculation of the pˉ/p\bar{p}/p ratio in cosmic rays is compared to the recent PAMELA data. The good match up to 100 GeV allows to set constraints on exotic contributions from thermal WIMP dark matter candidates. We derive stringent limits on possible enhancements of the WIMP \pbar flux: a mWIMPm_{\rm WIMP}=100 GeV (1 TeV) signal cannot be increased by more than a factor 6 (40) without overrunning PAMELA data. Annihilation through the W+W−W^+W^- channel is also inspected and cross-checked with e+/(e−+e+)e^+/(e^-+e^+) data. This scenario is strongly disfavored as it fails to simultaneously reproduce positron and antiproton measurements.Comment: 5 pages, 5 figures, the bibliography has been updated, minor modifications have been made in the tex

    Measurements of 0.2 to 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer

    Get PDF
    We measured low energy cosmic-ray proton and helium spectra in the kinetic energy range 0.215 - 21.5 GeV/n at different solar activities during a period from 1997 to 2002. The observations were carried out with the BESS spectrometer launched on a balloon at Lynn Lake, Canada. A calculation for the correction of secondary particle backgrounds from the overlying atmosphere was improved by using the measured spectra at small atmospheric depths ranging from 5 through 37 g/cm^2. The uncertainties including statistical and systematic errors of the obtained spectra at the top of atmosphere are 5-7 % for protons and 6-9 % for helium nuclei in the energy range 0.5 - 5 GeV/n.Comment: 27 pages, 7 Tables, 9 figures, Submitted to Astroparticle Physic

    Measurement of cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight

    Full text link
    The BESS-Polar spectrometer had its first successful balloon flight over Antarctica in December 2004. During the 8.5-day long-duration flight, almost 0.9 billion events were recorded and 1,520 antiprotons were detected in the energy range 0.1-4.2 GeV. In this paper, we report the antiproton spectrum obtained, discuss the origin of cosmic-ray antiprotons, and use antiprotons to probe the effect of charge sign dependent drift in the solar modulation.Comment: 18 pages, 1 table, 5 figures, submitted to Physics Letters

    Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer

    Get PDF
    Primary and atmospheric cosmic-ray spectra were precisely measured with the BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve seven times higher resolution in momentum measurement. We report absolute fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and 1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.

    Search for Cosmic-Ray Antideuterons

    Full text link
    We performed a search for cosmic-ray antideuterons using data collected during four BESS balloon flights from 1997 to 2000. No candidate was found. We derived, for the first time, an upper limit of 1.9E-4 (m^2 s sr GeV/nucleon)^(-1) for the differential flux of cosmic-ray antideuterons, at the 95% confidence level, between 0.17 and 1.15 GeV/nucleon at the top of the atmosphere.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Measurement of the cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight over Antarctica

    Full text link
    The energy spectrum of cosmic-ray antiprotons from 0.17 to 3.5 GeV has been measured using 7886 antiprotons detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary antiproton calculations. Cosmologically primary antiprotons have been investigated by comparing measured and calculated antiproton spectra. BESS-Polar II data show no evidence of primary antiprotons from evaporation of primordial black holes.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Prospects for improving the sensitivity of KAGRA gravitational wave detector

    No full text
    KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRA's possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-of-the-art detectors, KAGRA requires different investigations for the upgrade since it is the only detector which employs cryogenic cooling of the test mass mirrors. In this paper, investigations on the upgrade plans which can be realized by changing the input laser power, increasing the mirror mass, and injecting frequency dependent squeezed vacuum are presented. We show how each upgrade affects to the detector frequency bands and also discuss impacts on gravitational-wave science. We then propose an effective progression of upgrades based on technical feasibility and scientific scenarios

    Measurements of Proton, Helium and Muon Spectra at Small Atmospheric Depths with the BESS Spectrometer

    Full text link
    The cosmic-ray proton, helium, and muon spectra at small atmospheric depths of 4.5 -- 28 g/cm^2 were precisely measured during the slow descending period of the BESS-2001 balloon flight. The variation of atmospheric secondary particle fluxes as a function of atmospheric depth provides fundamental information to study hadronic interactions of the primary cosmic rays with the atmosphere.Comment: 21 pages, 11 figures, 4 table

    Measurements of Atmospheric Antiprotons

    Full text link
    We measured atmospheric antiproton spectra in the energy range 0.2 to 3.4 GeV, at sea level and at balloon altitude in the atmospheric depth range 4.5 to 26 g/cm^2. The observed energy spectra, including our previous measurements at mountain altitude, were compared with estimated spectra calculated on various assumptions regarding the energy distribution of antiprotons that interacted with air nuclei.Comment: Accepted for publication in PL

    Precise Measurements of Atmospheric Muon Fluxes with the BESS Spectrometer

    Full text link
    The vertical absolute fluxes of atmospheric muons and muon charge ratio have been measured precisely at different geomagnetic locations by using the BESS spectrometer. The observations had been performed at sea level (30 m above sea level) in Tsukuba, Japan, and at 360 m above sea level in Lynn Lake, Canada. The vertical cutoff rigidities in Tsukuba (36.2 N, 140.1 E) and in Lynn Lake (56.5 N, 101.0 W) are 11.4 GV and 0.4 GV, respectively. We have obtained vertical fluxes of positive and negative muons in a momentum range from 0.6 to 20 GeV/c with systematic errors less than 3 % in both measurements. By comparing the data collected at two different geomagnetic latitudes, we have seen an effect of cutoff rigidity. The dependence on the atmospheric pressure and temperature, and the solar modulation effect have been also clearly observed. We also clearly observed the decrease of charge ratio of muons at low momentum side with at higher cutoff rigidity region.Comment: 35 pages, 9 figures. Submitted to Astroparticle Physic
    • 

    corecore