10,295 research outputs found

    A method of limit point calculation in finite element structural analysis

    Get PDF
    An approach is presented for the calculation of limit points for structures described by discrete coordinates, and whose governing equations derive from finite element concepts. The nonlinear load-displacement path of the imperfect structure is first traced by use of a direct iteration scheme and the determinant of the governing algebraic equations is calculated at each solution point. The limit point is then established by extrapolation and imposition of the condition of zero slope of the plot of load vs. determinant. Three problems are solved in illustration of the approach and in comparison with alternative procedures and test data

    A finite element procedure for nonlinear prebuckling and initial postbuckling analysis

    Get PDF
    A procedure cast in a form appropriate to the finite element method is presented for geometrically nonlinear prebuckling and postbuckling structural analysis, including the identification of snap-through type of buckling. The principal features of this procedure are the use of direct iteration for solution of the nonlinear algebraic equations in the prebuckling range, an interpolation scheme for determination of the initial bifurcation point, a perturbation method in definition of the load-displacement behavior through the postbuckling regime, and extrapolation in determination of the limit point for snap-through buckling. Three numerical examples are presented in illustration of the procedure and in comparison with alternative approaches

    Fano Lineshapes Revisited: Symmetric Photoionization Peaks from Pure Continuum Excitation

    Full text link
    In a photoionization spectrum in which there is no excitation of the discrete states, but only the underlying continuum, we have observed resonances which appear as symmetric peaks, not the commonly expected window resonances. Furthermore, since the excitation to the unperturbed continuum vanishes, the cross section expected from Fano's configuration interaction theory is identically zero. This shortcoming is removed by the explicit introduction of the phase shifted continuum, which demonstrates that the shape of a resonance, by itself, provides no information about the relative excitation amplitudes to the discrete state and the continuum.Comment: 4 pages, 3 figure

    Dynamical properties of dipolar Fermi gases

    Full text link
    We investigate dynamical properties of a one-component Fermi gas with dipole-dipole interaction between particles. Using a variational function based on the Thomas-Fermi density distribution in phase space representation, the total energy is described by a function of deformation parameters in both real and momentum space. Various thermodynamic quantities of a uniform dipolar Fermi gas are derived, and then instability of this system is discussed. For a trapped dipolar Fermi gas, the collective oscillation frequencies are derived with the energy-weighted sum rule method. The frequencies for the monopole and quadrupole modes are calculated, and softening against collapse is shown as the dipolar strength approaches the critical value. Finally, we investigate the effects of the dipolar interaction on the expansion dynamics of the Fermi gas and show how the dipolar effects manifest in an expanded cloud.Comment: 14 pages, 8 figures, submitted to New J. Phy

    Spatiotemporal dynamics of quantum jumps with Rydberg atoms

    Get PDF
    We study the nonequilibrium dynamics of quantum jumps in a one-dimensional chain of atoms. Each atom is driven on a strong transition to a short-lived state and on a weak transition to a metastable state. We choose the metastable state to be a Rydberg state so that when an atom jumps to the Rydberg state, it inhibits or enhances jumps in the neighboring atoms. This leads to rich spatiotemporal dynamics that are visible in the fluorescence of the strong transition.Comment: 10 page

    Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    Get PDF
    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Tidal interactions (and possibly also ram pressure) can lead to the formation of unusual magnetic field morphologies (like polarized ridges) in galaxies out of the star-forming disks, which do not follow any observed component of the interstellar medium (ISM), as observed in NGC 2976. These galaxies are able to provide ordered magnetic fields far out of their main disks.Comment: 16 page

    Observation of a resonant four-body interaction in cold cesium Rydberg atoms

    Full text link
    Cold Rydberg atoms subject to long-range dipole-dipole interactions represent a particularly interesting system for exploring few-body interactions and probing the transition from 2-body physics to the many-body regime. In this work we report the direct observation of a resonant 4-body Rydberg interaction. We exploit the occurrence of an accidental quasi-coincidence of a 2-body and a 4-body resonant Stark-tuned Forster process in cesium to observe a resonant energy transfer requiring the simultaneous interaction of at least four neighboring atoms. These results are relevant for the implementation of quantum gates with Rydberg atoms and for further studies of many-body physics.Comment: 5 pages, 5 figure

    Observation of blue-shifted ultralong-range Cs2_{2} Rydberg molecules

    Full text link
    We observe ultralong-range blue-shifted Cs2_{2} molecular states near ns1/2ns_{1/2} Rydberg states in an optical dipole trap, where 31≤n≤3431\leq n\leq34. The accidental near degeneracy of (n−4)l(n-4)l and nsns Rydberg states for l>2l>2 in Cs, due to the small fractional nsns quantum defect, leads to non-adiabatic coupling among these states, producing potential wells above the nsns thresholds. Two important consequences of admixing high angular momentum states with nsns states are the formation of large permanent dipole moments, ∼15−100 \sim 15-100\,Debye, and accessibility of these states via two-photon association. The observed states are in excellent agreement with theory. Both projections of the total angular momentum on the internuclear axis are visible in the experiment

    Mesoscopic Rydberg Gate based on Electromagnetically Induced Transparency

    Full text link
    We demonstrate theoretically a parallelized C-NOT gate which allows to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond timescale. Our scheme relies on the strong and long-ranged interaction between Rydberg atoms triggering Electromagnetically Induced Transparency (EIT). By this we can robustly implement a conditional transfer of all ensemble atoms among two logical states, depending on the state of the control atom. We outline a many body interferometer which allows a comparison of two many-body quantum states by performing a measurement of the control atom.Comment: published versio

    12th Annual Conference on Recent Developments in IP Law and Policy

    Get PDF
    Program booklet and handouts for the IP Law Center at Golden Gate University School of Law\u27s 12th Annual Conference on Recent Developments in IP Law and Policy
    • …
    corecore