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LIST OF SYMBOLS

b ,b,...b Coefficients in the extrapolation
01 m formula of X and Det.

c ,c,...c. Coefficients in the extrapolation
formula of X and A|.

Det, Det. Determinant of the total stiffness matrix
and determinant at the ith load level.

EA, El Axial and flexural rigidities, respec-
tively.

f , f Element displacement shape function
*• ei vector and component.

[K], K.. System linear stiffness matrix and coef-
-1 ficients.

k, ,k2,k.. Spring constants of the non-linear
foundation.

L Total length of beam.

[N1(A)],(N2(A
2)],

N. .,, N. .,. Structure geometric stiffness matrices
IJK IJKX. and coe££icients.

{P}, P. Structure nodal force vector and
component.

\r , w Beam transverse displacement, initial
max value, and maximum initial value.

{A}, A. Displacement vector and component.

A* Initial displacement component.

A Amplitude of specified displacement
component at load intensity X .

Au Amplitude of specified displacement at
limit load intensity, Xu.

X Load intensity.

Xc Load intensity for bifurcation (knee-
frame problem).

Xu Limit load intensity.

X^,X Load intensities at typical load
levels q and k, respectively.

0 Angular displacement of joint of knee-
frame.



I. INTRODUCTION

Progress in the analysis of post-critical behavior of
structures has recently been delineated by Bienek' •* and

f 21Hutchinson and Koiterv ' . One important class of problem

described in these surveys concerns structures for which the

slope of the postbuckling load versus displacement curve is
negative. In such cases the imperfect actual structure may

fail, or "snap-through" at a load intensity below bifurcation

of the perfect form of the same structure. The objective of

this report is to present an approach to the calculation of
limit points for structures described by discrete coordi-

nates and whose governing equations derive from finite ele-

ment concepts.

Modern developments in limit point calculation have

centered about the perturbation concepts pioneered by
Koiter*- •* and established in alternate form by Sewell'- '

and Thompson*- ' . Application of these concepts in the con-

text of classical theory has expanded considerably the un-

derstanding of post-critical phenomena. This understanding
has been broadened through the extension of finite element

structural analysis procedures*- * . In finite element
structural analysis, however, perturbation methods require

extensive and complex algebraic operations. Additionally,
although limitations of the applicability of such methods to
linear prebuckling states have been removed,*- ' ' they are

intrinsically asymptotic procedures with validity limited to
behavior close to bifurcation.

The method presented here takes the form of a simple

computational algorithm and does not sustain the limita-

tions of an asymptotic theory. First, the nonlinear load-

displacement path of the imperfect structure is traced by

use of an accelerated direct iteration scheme and the deter-

minant of governing algebraic equations is calculated at
each solution point. Then, by Lagrange interpolation, a

functional representation of the load (X) vs. determinant

(Det.) behavior is constructed. The limit point is estab-



lished by extrapolation and imposition of the condition of

zero slope of the X-Det. curve. In its present form the

method does not allow for calculation of load-displacement

response beyond the limit point.

Three problems are solved in illustration of the meth-

od and in verification of its accuracy. Although these are

beam, arch, and frame structures the finite element concept

is represented by the formulative basis of the elements em-

ployed in these analyses (assumed displacement fields) and

by the form of the nonlinear algebraic equations under

study. The present method is demonstrated to be accurate

in all of the above cases. Experience in these and other

numerical solutions allows conclusions to be drawn regard-

ing selection of solution points and convergence.

II. ELEMENT AND SYSTEM FORMULATIONS

The purpose of this section is to define the general

algebraic form of finite element stiffness equations for

the present geometrically nonlinear analysis. The term

"finite element stiffness equations" implies that the elas-

tic deformational behavior of each designated region of the

complete structure is to be characterized by certain dis-

placement parameters, or degrees-of-freedom (d.o.f.), {A}.

The description of the displacement field (A) within the

region of the structure is accomplished with use of shape

functions |.fej, so that

A = L£eJ
{A} 'M

or, in indicial notation, A =ufe. A.. Indicial notation is

especially useful in geometrically nonlinear finite element

analysis and is employed in description of the developments

to follow. Illustration of the detailed definition of

these parameters and of the subsequent formulation of ele-

ment relationships on that basis is given in Reference 11

for the case of a beam element on an elastic foundation.

The physical problem towards which the present work is

directed is characterized by initial displacements due to



fabricational inaccuracy. In accounting for these in the

following we assume that the initial displacements are

distributed throughout the structure in a form identical to

the elastic displacements (Equation 1). Hence, the initial

displacements are properly described by the joint values

(indicial notation) A.. Also, we designate the total dis-
T -placements by A.. Using these designations, the system

stiffness equations for small strain non-incremental finite

displacement analysis, for conservative loading and a

Lagrangian frame of reference, are of the form^ '

i i T
1 T K" 0 T I/" 0 1 'JL I IV A/ _ I ^ A* .1.

where K.. is the coefficient of the linear (small displace-

ment theory) stiffness matrix [k].

N.., is the coefficient of the first-order nonlinear

portion of the stiffness relationships.

N..vo is the coefficient of the second-order nonlinear
1 j JC JG

portion of the stiffness relationships.

P. is a component of the applied load vector ({P}) ,

in normalized form.

X is the load parameter, a scalar, which can be adjusted

to define a desired intensity of loading.

T i
Noting now that the net displacements are A. = A- - A-,

substituting this into Eq. (2) and collecting terms, we

have the desired form of governing equilibrium equation

Kij Aj * Nijk Aj Ak + Nijk£ Aj Ak Ai

+ 2Nijk Aj Ak + 3 Nijk)lAjAkA£-XPi= °
(3)

where only linear terms of A"!" are retained.

III. SOLUTION OF EQUILIBRIUM EQUATIONS

The method chosen here for solution of the equilibrium

relationship (Equation 3) is direct iteration. To describe



this concisely it is useful to transform Equation 3 to

matrix form, as follows

ADHA) + [N2(A
2)]{A>

1(A
1)] {A} + [3N2(A

i,A)]{A) -X{P} = 0 (3a)

where now [N1(A)]{A> and [N2(A)
2]{A> are formed from

NijkAj Ak and Nijk£ AjAkV respectively, and ̂ N^A1) ] {A}
and [3N7(A

1,A)]{A> are formed from 2N. -v A* and 3N. .,0A*AA,I- 1 J K. J 1 j KJ6 J
respectively.

In the basic' form of the iterative method it is as-

sumed that the solution is to be obtained for a load inten-

sity A , and that solution data from a prior load level,

say X^~ , is available and designated as {A}°. Thus, the

matrices [N1(A)°], [N2(A,A)°], [21̂  (A1)0] and [3N2(A
1,A)°]

may be formed using (A}° and we may solve Equation (3a) to

yield

{A}1 = [k]"1{Xq{P}-[N1(A)
0]{A}0-[N2(A,A)

0]{A}°

-[2N1(A
i)]{A}°-[3N2(A

i,A)°]{A}0} (4)

where the superscript 1 on {A} denotes the first iteration

in the solution at Xq. We then re-form [N, (A) ] , etc. on
i -L

the basis of {A} , so that

{A}2 = [K]"1{Xq{P}-[N1(A)
1]{A}1-N2(A,A)

1]{A>1

-[2N1CA
1)]{A}1 - [3N2(A

1,A)1]{A}1} (5)

7 + Vt
which is now solved for {A} . In the general, j , itera-

tive solution is

CA1)] * [3N2(A
i,A)j'1]]{A}1} (6)

The iterative sequence continues until {A}-1 is within

{A}-'" to a specified tolerance. Note that direct iteration

requires only the inversion of the linear stiffness matrix



and continued re-formation of [N,(A)], etc.

The knowledge of a nearby solution, as for {A}° in
Equation (4) , enhances the efficiency of the iterative pro-

cess. Hence, the analysis is performed at various load

levels, from a level close to zero to a level as close as
possible to limit load. Convergence difficulties are en-

countered when the nonlinearities are severe. In such

cases an improved procedure is to employ a higher-order
iterative scheme as described in Reference 11.

IV. EXTRAPOLATION FOR CALCULATION OF LIMIT POINT

According to the energy criterion of stability^ \ the

limit point is characterized by the vanishing of the second
variation of the total potential energy of the structure.

In a finite element formulation the corresponding criterion

is that the determinant of the total stiffness matrix is
zero. Thus, it is not possible to accomplish the solution

of Equation 3a at the limit point. The evaluation of the
load and displacement at this point is accomplished by

extrapolation of determinants of solutions at prior points

on the pre-buckling path, as described in the following,

and illustrated in Figures 1 and 2.

We designate by the symbol (Det) the determinant of

the equilibrium equations 3a, i.e.

Det. = |K. + ZN-^A) + 3N2(A,A) + 2N1(A
1) + 6N2(A

1,A)|

As indicated above, the determinant of the total stiffness

matrix is zero at the limit point and in addition (see

Figure 2) there is a stationary point on the X-Det relation-
ship, i.e.

dX
d(DetJ X=Xu

= 0 (8)

where X designates the intensity of the loading parameter
at limit load.



A series representation of X versus Det may be written

in the form

X = bQ + bx (Det) + b2 (Det)
2 + + bm (Det)

m (9)

where m is the number of fundamental-path solution points

employed and bQ . ...b are coefficients to be determined.

By application of Equation (8), b, = 0. Then, a system of

simultaneous equations for calculation of b0, b-, ... b is

established by evaluation of Equation (9) at each of the m

points. E.g., at the typical point k on the fundamental

path

Xk = bQ + b2 (Det)k
2 + ... bm (Det)k

m (10)

This yields a system of m equations whose solution furnishes

the coefficients bQ, b-, ... b . The limit point is com-

puted by setting Det to zero in Equation (9). Thus, at the

limit point, X = b .

It should be noted that at least three terms are needed

in Equation 10. This expression is equivalent to a Taylor

series expansion about the limit point. Since the first

derivative is zero at that point the linear term does not

appear and at least the (Det) term should be included. If
2only the (Det) is included, however, the resulting curve

is a parabola symmetric about the limit point. To cope

with skewness in the curve, which is likely to exist, the

(Det) term should be included.

No rules can be suggested for the best number of terms

beyond three. Equation 10 represents extrapolation for

which error estimation is not possible. In practice, the

number of terms is limited by the number of load levels

used in the pre-buckling calculation, which in turn depends

on the scheme used to generate the next load level. The

scheme used here in ullustrative examples is to choose the

load level at the 1/3 point between the prior load level

and the estimated limit load.



The extrapolation to determine the displacement at the

limit point differs from the extrapolation to determine the

limit load in that a fixed number of solution points is em-

ployed and the value of the limit load is also used. First,

the load parameter-displacement relationship is assumed to

be of cubic form
2

X = c + c, A + C?(AJ + C3 (As) (n)U -L O £• o jo

where c , c,, c2 and c, are constants to be determined and

A is the displacement in the specified degree-of-freedoms
k

evaluated at the load intensity X . Equation 11 is con-

structed for each of three load intensities. Also, evalua-

tion at the limit point (A = Xu, A = A") is accomplished^ o

u u u u
X = c + c, A + c- (A0) + c,(Ac.) (12)

O IS L S j 5

and it is noted that for this equation, A" is as yet un-

known. Finally, we have the condition at the limit point.

dX
 u = 0 (13)

and, by application to Equation 11

2 •
0 = c, + 2c? (A

u) + 3c, (A") (14)
J . £ » j J o

Thus, five nonlinear algebraic equations (three forms

of (11), and (12) and (13)) are available for calculation

of c , c,, c9, c, and A
u. It is convenient to accomplish

O JL £ j S

this determination by eliminating three parameters by solu-

tion of the three linear equations (Eqs. 11), substitution

of the result into (12) and (14) , and solution of the lat-

ter by Newton-Raphson iteration. If the full vector of

joint displacements is needed the above operation must be

repeated for each degree-of-freedom.

The reasoning in selection of a third-degree polynomial

in Equation (11) is as follows. This equation, like Equa-

tion (10), is equivalent to a Taylor series expansion about

the limit point. By the same argument as given above, no
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less than a third-degree polynomial should be chosen. In

the present case, since Xu is already known and Equation

(11) is used only to calculate the displacements at Xu and

not to give accurate predictions beyond the immediate vicin-

ity of Xu, higher order terms are not needed.

V. ILLUSTRATIVE EXAMPLES

1. Beam on Nonlinear Foundation

The purpose of this example, the axially-loaded.beam

on nonlinear elastic foundation shown in Figure 3, is the

comparison of results obtained with the present method with

results obtained by use of the perturbation method of Refer-

ence 10.

The nonlinear foundation modulus for the beam is given

by k,w - k-w - k,w , where w is the transverse displacement

and k. k, simulates thew, , k2, and k, are spring constants. *v,

linear stiffness [k]; k- and k, yield matrix coefficients

which correspond to the [n,] and [n-] geometric stiffness

matrices, respectively. Five different combinations of

these constants were employed for the subject numerical

solutions, as.follows:

CASE

I

II

III

IV

V

k1/EI/L
4

16

160

16

16

16

k2/EI/L
5'

0

0

500

500

500

k3/EI/L
6

16000

80000

0

-1000

1000

Pcr/EI/L
2

1-1.49

26.09

11.49

11.49

11.49

In Cases I-III either k- or k^ is set equal to zero to

simulate cases where [n,] and [n2], respectively, are zero.

Cases IV and V correspond to the general nonlinear finite

element formulation of a non-symmetric structure. The

above listing also gives the critical loads for the beam

on linear elastic foundation as found in Reference 12.



In each Case the initial deviation of the complete
beam is assumed to be of the form w = w sin ^y- ,

max
where WQ takes on values .OIL, .02L, .03L, .05L, .06L,

max
.07L, .08L, .09L, .10L. The finite element idealization
consists of eight equal-length elements. Formulation of

the pertinent element is detailed in Reference 11.

In the presence of imperfection, the axially loaded

beam exhibits a snap-through type of buckling due to the
continuously weakening foundation modulus k,w - k-w - k,w .

Figure 3 shows the foundation modulus for Cases I-III.

A typical load-displacement plot is shown in Figure 4 for

Case IV for values of WQ of 0 and »Q1 .demonstrating
max

the nature of this effect.

Curves of limit points vs. the imperfection amplitude
W are plotted in Figure 5 for Cases I-III and in Figure

max
6 for Cases IV and V. Close agreement between the results
of the present method and the perturbation approach is ob-

served. The numerical results, summarized in Table I, show
a 5% maximum discrepancy with solutions obtained using the
perturbation method.

2. Hinged Circular Arch Under Central Point Load

This structure, shown in Figure 7, exhibits a highly
nonlinear load-displacement path leading to snap-through

buckling. An exact analytical solution, under the assump-
tion of axial inextensibility, was published by Biezeno.*- '

f 91Haftka, et al *• ' develop solutions by means of both the
perturbation method and the so-called "modified structure"

method, using finite element idealization consisting of
straight axial-flexure elements. Experimental data and

further theoretical work on this class of problem was re-
f 141cently reported by Dickie and Broughton . .

Table 2 lists the solution points on the equilibrium

path as calculated by the present iterative method. These

results are plotted in Figure 7. In order to test the
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accuracy and convergence of the present approach to the

prediction of the limit point load, extrapolations were

carried out at different stages in the definition of the

prebuckling path. The first attempt was made at solution

point 3, using the data from points 1, 2 and 3. Calcula-

tions were then made at each succeeding solution point,

using all prior points in defining the curve to be extrap-

olated. It is seen that an acceptable prediction (<5% er-

ror) is obtained when the final solution point is less than

70% of the limit point exact solution of Ref. (13). The

solution is nearly exact for extrapolation from the point

at 921 of the exact load level. It should be noted that

the present analytical model includes the axial deformation

so that the convergent solution is slightly different from

that given, in Reference 13.

Predictions of the central displacement (A ) of the

arch at the limit point were obtained for succeeding points

in the manner described in Section IV. These results, ex-

pressed as a percentage of the Reference 13 solution, are

listed in Table 2. The results are comparable in accuracy

with the limit point load results and are quite acceptable

at or beyond the 92% point.

The existence of an exact solution beyond the limit

point enables assessment of the- value of extrapolation in

the post-buckling regime. The above (cubic-based) displace-

ment curves were extended as shown in Figure 8. It is seen

that reliable results beyond the limit point cannot be ob-

tained by simple extrapolation.

3. Knee-Frame

The knee frame shown in Figure 9 was analyzed by

Koiter^ ^ using his perturbation method and Roorda^ ' has

conducted tests of the same structure. The test data shown

in this figure exhibit a snap-through buckling phenomenon

due to the axial shortening of the column and the inherent

imperfection of the thin strip member used in the test. If

these factors are neglected, then the linear prebuckling

analysis as performed in Reference 16 yields a bifurcation
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load Xc = 13.886
I

The presentation of test data in Ref. 16 does not make

clear if the value of X in the ordinate X/X is a calcu-
f 9")lated or tested value. Haftka, et alv ' analyze the same

frame using the "modified structure" method and employ for
Xc in this representation the value 14.022 EI/L , found by

putting the vertical load slightly eccentric to the top of

the column such that the resulting rotation at the joint of
beam and column was negligibly small. Then, the load was

-4placed 0.5 x 10 L to the right of that neutral point to

produce the curve shown in Figure 9; although the exact ec-

centricity of the neutral point is not defined.

In the present work the results shown in Figure 9 cor-

respond to a vertical load acting at the top of the column

and the snap -through is due to the axial shortening only.
c 2The normalizing X is taken to be 13.668 EI/L , which is

found by placing the load, after several trials 0.18 x 10" L

to the right of the top of the column to produce negligibly
-4small rotations (<0.5 x 10 degrees) at the joint of beam

and column. The extrapolated limit point, X = 13.525 so
that XU/XC = 0.99 is in close agreement with Roorda's test

data. The last load level is X/XC = 12.6/13.668 = 0.92.

VI. CONCLUDING REMARKS

A computationally-simple approach to the calculation
of limit points has been presented and verified through com-

parison with prominent alternative solutions and test data.

The most questionable aspect of this approach appears to be

the use of extrapolation in prediction of both the limit

load and the associated displacements. No difficulties were
encountered from this source, however, in performance of the

presented numerical analyses.

The basic limitation of the present method is due to
the nature of extrapolation, namely error estimation is lack-

ing. Although an extrapolated X-u curve cannot be regarded

as an accurate post-buckling curve, it is certainly a good
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"initial predictor" for a point beyond the limit point.

Certain investigations may require the tracing of the

load-displacement path beyond the limit point. This ini-

tial predictor can be efficiently utilized when coupled with

some other schemes for post-buckling analysis. Another way

of accomplishing this is by initiation of analysis at the

limit point and with decrementation of the loading. Other

procedures appear promising and are under study.
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ĵ
00
0
'

ĵ
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TABLE 2

HINGED SHALLOW ARCH PROBLEM - RESULTS OF

EXTRAPOLATIONS FROM RESPECTIVE SOLUTION POINTS

Solution
Points

1

2

3

4

5

6

7

8

9

10

11

*
Load Level

x/xe
0

.230

.460

.690

.920

.935

.948

.971

.982

.990

.994

Extrap. Limit Load

xu/xe
- •

-

0.865

0.965

0.999

1.002

1.004

1.007

1.004

1.006

1.007

**
Extrap. Central Defl.

VAe
-

-

-

0.895

0.963

0.984

0.990

1.004

0.987

1.002

1.009

* X - Exact limit load, from Ref. 13 = 432 Ib.c .

** A - Exact value of central deflection from Ref. 13.
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1. Representative Load-Displacement Plot,
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Det

Det

Det

Det

Oet

FOR EXTRAPOLATION
SEE EQ. (9)

2. Determination of Limit Point via Extrapolation,
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Foundation Modulus

k w - k w2 - k w3

(force / length)

w/L

3. Foundation Properties.
Foundation.

Beam on Nonlinear Elastic
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12

10

8

Post-Buckling Path

w =0
"max

Load-Central Deflection
for wn =o.ol!_

°max

— : Perturbation Method (ReF
o : I terative Solution Points

40 50 60

4. Beam on Nonlinear Elastic Foundation. Post-Buckling
Path and Load-Displacement Relationship. Case IV.
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xu/xc

Imperfection Amplitude

A EXTKApot-ano* METHOD

O FttTU&BATioM METHOD
(R£F. it)

V/0 *(°
"Q "

8 10

5. Beam on Nonlinear Elastic Foundation Limit Load as a
Function of w Cases I - I I I .

max
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0.7-

0.6

0.5- -

0.4

0.3"

0.2

A Extrapolation Method

o Perturbation Method (Ref. ll)

Imperfection Amplitude,

6 8

o ' »-m ox
10

6. Beam on Nonlinear Elastic Foundation. Limit Load as
a Function of w Cases IV-V.

max
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(Ibs.)

600 -

500 -

400 _

100

300 _

200 _

0.5 1.0 1.5 2.0
Ac(in.)

7. Load-Displacement Behavior of Hinged Shallow Arch
Under Central Concentrated Load.
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X (Ibs)

500

400

300

200

100

0 «

Exact (Ref.13)

Extrapolated

0 0.5 1.0 1.5 2.0

8. Extrapolations Beyond Limit Point of Arch Load-
Displacement Behavior.
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1.00

0.98

0.96

0.94

0.92

0.90

0
0

25

0-7 "•* 23-

El = 610 Ih-in.

EA = 1875000 Ib.

Experimental Result (Ref. 16)

Direct Solution (Ref. 15)

• Iterative Solution Points

Extrapolated Path

10
8 (degree)

9. Load-Displacement Behavior of Knee-Frame Under
Point Load.
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