View metadata, citation and similar papers at core.ac.uk

P4
brought to you by .{ CORE

provided by NA: echnical Reports Server

NASA CONTRACTOR
REPORT

T

N ‘gdv) AHVHEIT HOEL

KIRTLAND AFB, N. M.

o

o

(= )

o

)

LOAN COPY: RETURN TO

= AFWL (DOwL)

<L

=

A FINITE ELEMENT PROCEDURE
FOR NONLINEAR PREBUCKLING
AND INITIAL POSTBUCKLING ANALYSIS

by S.-T. Mau and R. H. Gallagher

Prepared by

CORNELL UNIVERSITY
Ithaca, N.Y. 14850

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. ~ JANUARY 1972


https://core.ac.uk/display/85233638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TECH LIBRARY KAFB, NM

L

0060940

. n..;o& No. 2. Government Accession No.

'NASA CR-1936

3. Recipient’s Catalog No.

[~ 4. Title and Subritle

A FINITE ELEMENT PROCEDURE FOR NONLINEAR
PREBUCKLING AND INITIAL POSTBUCKLING ANALYSIS

5. Report Date

January 1972

6. Performing Organization Code )

r7 Author(s) h -

S.-T. Mau -and R. H. Gallagher

8. Pérforming Organization Report No.

"9, Porformin;] Organization Name and Address

Cornell University
Ithaca, New York

10. Work Unit No.

126-14-16-01

11. Contract or Grant No.

NGR 33-010-070

12. Sponsoring Agency Name and Address

' National Aeronautics and Space Administration
Washington, D.C. 20546

13. Type of Report and Period Covered
Contractor Report

14. Sponsoring Agency Code

15." Supplementary Notes

16. Abswact

alternative appraaches.

A procedure cast in a form appropriate to the finite element method is pre-
sented for geometrically nonlinear prebuckling and postbuckling structural analysis,
including the identification of snap-through type of buckling. The principal features
of this procedure are the use of direct iteration for solution of the nonlinear
algebraic equations in the prebuckling range, an interpolation scheme for deter-
mination of the initial bifurcation point, a perturbation method in definition of
the load-displacement behavior through the postbuckling regime, and extrapolation
in determination of the limit point for snap-through buckling. Three numerical
examples are presented in illustration of the procedure and in comparison with

[17. Key Words (Suggested by Author(s))
Finite element methods, buckling analysis, -
nonlinear analysis, imperfection

sensitivity . .

18. Distribution Statement

Unclassified

19, Security Classif. (of this report}

Unclassified

T 20. Security Ciassif. (of this page)
Unclassified

21. No. of Pages 22, Price®

5 56 ¢_$3,_0(_) _

.For sals by the National Technical |nformation Service, Springfield, Virginia 22151







TABLE OF CONTENTS

LIST OF SYMBOLS
I. INTRODUCTION
II. ELEMENT AND SYSTEM FORMULATIONS
III. PREBUCKLING ANALYSIS
IV. DETERMINATION OF BIFURCATION
V. POSTBUCKLING ANALYSIS
VI. EFFECT OF IMPERFECTION

VII. EXTRAPOLATION METHOD FOR
CALCULATION OF LIMIT POINT

VIII. ILLUSTRATIVE EXAMPLES

1. Clamped Thiln Shallow Circular
Arch -Under Uniform Load

2. Beam on Nonlinear Foundation
3. Flat Plate Post-buckling
IX. CONCLUDING REMARKS

APPENDIX: SOLUTION DETAILS FOR ILLUSTRATIVE EXAMPLES

1. Clamped Thin Shallow Cilrcular
Arch Under Uniform Load

2. Beam on Nonlinear Foundatlon
3. Flat Plate Post-buckling
REFERENCES
FIGURES

iii

19
20
22
25
27

27
30
33
35
38






A

bo,bl' . lbm

Det, Deti

D, ,D .D

2’..
D315D57

7’
€1-%11°%111
EI

7"
{fe},{fé},{fe}
{F},Fi
h

{I},Ii
fx], kiJ

2’73
| 1]
13°%45°K1

L
M

[ny(8)],[n,(8%)]
[Ny (8)1,(N,(8°)7,

Nygke Nigke
N N
Nigne Nijgx

(N]
Po

LIST OF SYMBOLS

Cross-sectlonal area of arch.

Coefficlents in the extrapolation
formula of A and Det.

Determinant of the total stiffness matrix
and Determlnant at the 1ith load level.

Coefficlents in the parametric formulas of
load and displacement.

Derlvatives of e w.r.t. the perturbation
parameter.

Flexural rigidity of the beam and arch
cross-~section.

Field function of lateral displacement of
beam and 1ts derivatlves w.r.t. element
coordinate £.

Element nodal force vector and component.

Depth of the cross-sectlion of the circular
arch and plate thickness.

Pattern of imperfection and component.

Element linear stiffness matrix and coef-
flclents.

System linear stiffness matrix and coef-
ficlents.

Spring constants of the non-linear foundatlon.

Matrices associated with the pre-buckling
solution.

Length of an element of the beam.
Length of the beam.

Applied moment.

Element geometrlc stiffness matrices.

Structure geometric stiffness matrices
and coefflclents.

Coefflicients assoclated with the prebuckling
dlsplacements and thelr derivatives respec-
tively.

Aggregate geometric stiffness matrilx
Arch uniform load intensity.

v



{p}, P,

U,v,w

Yo

y
{a},a,
{8} ,B,
{Ap},Ag
{E°},{5'C},{B"%}

{Al} Ail’{AZ}’A12

A »A

1y

1.0

A
]

Ag1:8555833

Structure nodal force vector and component.
Circular arch radius.

Displacement components.

Beam initial displacement.

Imperfection parameter.

Displacements.

Prebuckling displacements.

Additional post-buckling displacements.

Prebuckling displacement at bifurcation
load and thelr derivatives.

Components of the post-buckling dlsplacements.

Components of A1 .
2

The displacement chosen to be the path
parameter €.

Components of Ag in the power series expanslon.
Value of Ai at load level AJ.

Path parameter.

Axlal strain of the arch.

Arch circumferentlal coordinate and total angle.
Nondimensional load parameter.

The 1th load level.

Bifurcatlon load, limit load.

Coefflcients 1n the perturbation equation.

Radial distance measured from the arch
middle surface.

Nodal slopes of the beam element.
Element local coordinate.

Potential energy and 1th component of
potential energy (i=1,2,3).

vi



I. INTRODUCTION

The analysls of instabllity phenomena of compllicated thin
shells has drawn intensified interest due, in part, to the dev-
elopment of finlte element analysls procedures for such struc-

(1) It is well known that structures of this class col-

tures.
lapse at load levels which are less than those predicted by

linear instability theory because of the role played by 1nitial
imperfections and geometric nonlinearities. The extensive ef-

forts in the development of theories to cope with the latt?r)
2

(3)

considerations have been surveyed by Hutchinson and Kolter
Other noteworthy surveys have been written by Haftka, et al
and Bienek(u).

Although the various types of instabllity phenomena which
might ocecur in the complete range of load-displacement behavior
prlor to final collapse are not as yet fully understood, certain
forms are known and are of conslderable practical lmportance,
especially those which occur 1n the earliest stages of loading.
These are illustrated in Figure 1. Curve a applies to "perfect"
structures and represents the case 1n which the structure first
displaces along the path defined by OAB (the fundamental path)
and bifurcates (or branches) at the Point A to another path, OC.
In ¢ontrast to a rising postbuckling path, as OC, a descending
path OD (as pilctured in Figure 1b) may be encountered.

When the structure possesses fabricational imperfections
the load~displacement behavior follows the paths indicated by
dotted lines. The structure with a rising postbuckling path
will have strength exceedlng the bifurcation load. The strength
of an 1mperfect structure wlth a descending postbuckllng path
in the perfect state will not achleve strengths as high as the
bifurcatlion load. Such structures, under the appropriate load
condition, are termed "imperfection sensitive’” and the maximum
load attained (Point E) 1is termed the "limit point".

A'non-bifurcating load-displacement behavior may also occur
for a structure assumed to be devolid of imperfectlons and may
take the form shown in Figure lc, which 1s slimllar 1in shape to
the curve OE (Figure 1lb) of the imperfection-sensitive structure.
Thus, a limit point is again encountered, at G, and the buckling



phenomenon is of the 'snap-~through' type.

A landmark development of procedures for establishing the
shape of the postbuckling path and for determining the limit
polnt for imperfectlon-sensitive structures 1s due to Koiter.(s)
Using the concept of perturbations from the bifurcation point,
this approach enables an efficlent definitilon of load-displace-
ment behavior in the 1lmmedlate postbuckling range. Further con-
tributlons or alternatilve forms of these concepts, in the classi-
cal vein, have been presented by Budlansky and Hutchinson(6)
Sewell(7), and Thompson(8’9)

Extensions of Kolter's procedure to the format of finlte
element analysis, as well as other finlte element approaches to
the same physical problem, have appeared(lo"l3). Morin(lo) ap
plles a predictor-corrector scheme 1ln calculatlon of non-linear
prebuckling behavior, in which a perturbatlon approach 1s em-~
ployed as the predictor and Newton-Raphson lteration 1s employed
as the corrector. The perturbation approach, in both the pre-
and post-buckling computatlonal phases, draws heavily upon
earllier work by Thompson and Walker(ll). Thompson has also ad-
vocated a new perturbation approach (Reference 9) for the subject
type of problem. Haftka, et a1(3) propose the definition of an
"equivalent structure”", one in which the nonlinear terms are
treated as inltial 1mperfections, 1n order to exploit the con-
cepts derlved by Kolter for imperfect structures. Dupuls, et
al(lz), attack the solutlon of the nonllnear equatlons in an
incremental-iterative manner. The work by Lang(l3) is a direct
adaptation of Kolter's concepts, lncluding retentlon of the
condition of a linear prebuckling state.

Recent analyses for both ldealized structures
thin shells(15) have shown that the assumptlon of a linear pre-
buckling state may lead to 1lnaccurate results. One of the
principal aspects of the work described 1n thils report is the
method of determination of the load, and dlsplacement state on
the fundamental path, at the bifurcation point followlng upon

a nonlinear prebuckling state. The information so-calculated

(14) and for



3

furnishes the necessary ingredients for an analysis of the post-
buckling or 1imit polnt behavior. Addltlonally, a new method
for calculating the 1limlt polnt of a perfect structure 1is sug-
gested by the method of pre-~buckling analysis.

The starting polint of the present small straln-finite dis-
placement formulation 1s the deflnition of element stiffness
equations in the Lagranglan frame of reference. The element
stiffness matrices extend to both first- and second-degree
geometrlc nonlinearlties in the element displacement parameters.
Then, direct 1lteration 1s used for solution of the nonlinear
algebralc equatlons 1n the prebuckling range. Unllike many wilde-
ly used and seemingly computationally more efflclent procedures,
direct iteration permits calculation of the fundamental path
beyond the blfurcatlon polint. Definition of the latter 1s ac-
compllished by Interpolation of the determinants of such solu-
tlons through the zero polint.

For postbuckling, and for snap-through buckling for initial-
imperfection situations, both displacements and loads are ex-
panded about the bifurcatlon polnt of the perfect structure 1n
power serles in a single parameter which 1s related to the
amplitude of the eigen-function in the deflected shape of the
structure. Upon determination of the serles coefficlents, the
solution is a parametric representation of load vs. displacement.

As 1ndicated above, a new procedure 1s devised for the
case of the limit point analysis of perfect structures. This
procedure, which requires little more than the calculation of
the determinants of the system (nonlinear) stiffness matrices
at various load levels below the 1llmit polnt, is alternatilve
to the perturbatlon-method-based procedure of Haftka, et al.(3)

The report l1ls organized as follows. The general form of
finite element force-dlsplacement relatlonships and of the
resulting equatlons which describe the behavlior of the complete
structure is given in Section II. It 1s presumed that a dis-
placement (stlffness) method of analysis 1s employed in des-
cription of the complete system. The approach to determina-
tion of the nonlinear pre-buckling behavior, through a direct



iteratlive procedure, is presented in Sectlon III. Both flrst-
order and second-order lteratlive schemes are presented. Section
IV 1s devoted to an examlnatlon of the relationship between the
load Intensity and the determlnant of the system stiffness
matrix and the use of this data in the calculation of the bi-
furcation load intensity.

The approach to postbuckling analysis, through applicatlon
of a perturbation technique, 1s described in Sectlion V and the
extenslon of this approach to cope with 1lnitlal lmperfectlons
1s given In Sectlion VI. Section VII 1s devoted to an exposition
of the method for limit point determination for perfect struc-
tures.

Three problems are solved 1n Sectlon VIII 1n verification
of the present approach and for the purpose of comparlison with
other methods. The filrst problem 1s that of the shallow arch.
Thls case, for which an exact solution 1is avallable, illustrates
the use of the direct 1teration - Interpolation method in
determination of the bifurcation point following upon a non-
linear fundamental path and demonstrates the predlction of
behavior for both perfect and imperfect forms of the arch by
use of the perturbatlion method.

The second problem concerns an axlially-loaded beam on non-
llnear elastlec foundation. Thls structure evldences a linear
(trivial) prebuckling behavior, but enables representation of
a snap-through buckling phenomenon in the presence of initial
imperfection of the beam. A number of alternative solutlon
procedures are applled to thils problem and are compalred with
the procedures devised in this report.

The thlird problem studled 1s a rectangular unlaxlally com-
pressed flat plate. The perfect flat plate possesses a trivial
prebucklling dlsplacement state for displacements normal to the
plane of the plate and the blfurcatlon load 1s calculated ac-
curately by linear theory. A postbuckling analysis 1s per-
formed by means of the perturbation method, and the results
are compared with a classical solution.

Detalls of the application of the procedures gilven in this
report to the arch, beam and flat plate problems are described
in the Appendix.
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Although the problems solved are elementary from the stand-
point of finlte element representation, they dellneate all
features of the more complex situations and are among the few
cases which have been studled thoroughly and for which compari-
son solutions or test data are avallable, Such comparlsons
were essentlal 1n a study addressed to a class of problems for
which a multlitude of alternative procedures have only recently
been proposed,

Because of the scope and complexlity of the present topie,
emphasls 1s restricted to the basic aspects of finite element
procedures for nonlinear prebuckling and initial postbuckling
analysls. Note should be taken of at least two other critical
and equally extenslve aspects of the toplc, computational ef-
ficlency and detalled formulation of finlte element relation-
ships per se. These and other facets of the total problem in
practical applicatlon are excluded from conslderation hereiln.
II. ELEMENT AND SYSTEM FORMULATIONS

The purpose of thls section is to define the general form
and characteristlcs of finlte element stiffness formulations

for geometrically nonlinear analysis. In accordance with the
above-expressed Intention to 1imit the scope of this report to
the procedures for pre- and post-buckling analysis, no considera-
tion 1s glven to specific types of elements, flelds for specific
element representatlons, the selectilon of assumed stress or
displacement, nor to the formulative procedures leading to the
detalled finite element and system equations. The latter con-
slderatlions are examined in reference 10.

In accordance with concepts detalled by Mallett and Marcal
(16), the element stiffness equatlons for small strain non-
incremental finlte displacement analysis for conservatlive load-
ings and a Lagranglan ffame of reference are of the general
form

[k1{A} + [n,(8)1{A} + [n,(A)]{A} = A {F} (1)
where

A{F} and {A} are the applied loads and corresponding dis-
placements (degrees-of-freedom), respectively. A, the loading
parameter, is a scale factor applied to the "normalized" load



6

vector {F}. The load vector {F} is normalized in the sense
that it represents only the relative magnitude of the loads
corresponding to the respective degrees-of-freedom {A}. Thus,
the Joint loads are applied in flxed proportion to one another,

[k] 1s the linear (small displacement theory) stiffness
matrix.

[nl(A)] is the first-order ("geometric") stiffness matrix,
where the indivlidual terms are linear functlions of the degrees-
of-freedom {A}. A simplified form of this matrix permits linear
stabllity analysls, as in Euler bucklilng.

[nz(A)] is the second-order ("geometric’) stiffness matrix,
with individual terms a quadric function of the degrees-of-
freedom {A}. These terms arise from the components of strailn
energy which are the first derivatives of w wlth respect to the
spatlal variables raised to the fourth power.

Upon assembly of the element relationships defined by Eq.
(1) to form a representation of the complete structure, (global
representation) the following equations are obtained

[K1{a} + [N (8)1{a} + [N,(a)1{a} = A{P) (2)

where the definitions of K, Nl’ N2 and P for the global repre-
sentation correspond to those given above for k, n;, Ny, and
F for the respective elements.

In indicial notation, Equation (2) becomes

KiJAJ + NiJkAJAk + NiJklAJAkAl = APi

Indiclal notation 1s especlally useful 1in nonlinear finite
element analysls slince the constants of the problem (NiJk and
Nijkl) are readlly identifled and can be stored permanently, in
contrast to the matrix format where [Nl(A)] and [N2(A)] are
dependent on the dlsplacements and change contlinually during
the numerical analysis process. This aspect of detalled com-
putation 1s dlscussed by Morin(IO) and Vos(17). It should also
be noted that although one would not expect symmetry in the
matrix forms of [Nl(A)] and [N2(A)], a symmetric format of the
matrix coefficlents 1s achieved by proper manipulation of the
basic forms of these matrices. The matrix (Eq. 2) and indicial

(2a)



(Eq. 2a) notatilons will be employed interchangeably throughout
this report.

ITI. PREBUCKLING ANALYSIS

A variety of methods for nonllnear equllibrium analysis
have been explored in the literature; much of this work has
been summarized by Halsler, et alSIB) A popular choice 1s the
Newton-Raphson method(lg) or 1its variants(20), due to a quadratic
convergence property. The Newton-Raphson method willl fall, how-
ever, at or in the viclnity of the bifurcatlion point. Although
procedures have been devlised to surmount this problem(21’22),
they do not appear appropriate to the present overall approach.
The direct i1lteratlve method, employed herein, presents no 4dif-
ficulty at the bifurcation polnt and 1s therefore chosen for
performance of nonlinear prebuckling analysis.

In the direct iterative method, a solution to Equation (2)
will already have been obtalned at the load level {Pi_l}, with
corresponding displacements {Ai_l}, and the load 1s incremented
by an amount {AP} to reach {Pl}. Thus, in the analysis at the
load level {P }, the matrices [N ] and [N ] are formed on the
basis of {Ai 1} and Equation (2) is written in the form

ety = agehy - iy, (bt - athiath o @)

where the superscript 1 on {Ai} indicates the first solution
in the iterative determlnation of {Ai} solving

1
ol = toet-mng et hiat ey, et h ettty W
We then form
1,2 1.1, 1.1
[K1{A"} = A{p} - [N (a1 ) ]{A } - [N, (A7) J{A™} (3a)

which can be solved for {A } . In the general (J ) itera-
tive solution

J J-1 J-1 J-1 J-1
x1aty” = agety - ovp )’ T3ty - b’ 1t (3b)
The iterative sequence continues until {A }J 1s within -
{a }J to a specified tolerance. It should be noted that
direct i1teration requires only the inversion of the linear
stiffness matrix and continued re-formation of [Nl] and [N2].



The proof of convergence of this' approach below the bifurcation
point is given 1n Reference 12.

Difficultles are encountered 1n this approach when the non-
linearlties are severe. Such difflcultles are often manifested
by contlnued iteration in a loop about the convergent solution.
In such cases an Improved procedure 1ls to employ a higher-order
iterative scheme, which 1s obtalned by substltuting Equation
(3a) into Equation (3). The result, for the Jth iteration, 1s
of the form

3
[K1{a'}" = AL [T] - [N 30k371- [N,30KD7HD {Ph)
- [ [N ICKITHONG T + [N IIKITHIN,] 1
+[N, ch]‘lcn 1+ [N, Jm‘lcn ] ]{AJ} (5)

where [N ] and [N ] are formed on the basis of {A } .

The knowledge of a nearby solutlon, as for {A -} in
Equatlion 3, enhances the efficlency of the lteratlive process.
For this reason, the analysis is recommended to be performed
at various load levels, extendlng from a level close to zero
load through to a level somewhat beyond the bifurcation load.

IV. DETERMINATION OF BIFURCATION

The basis of the approach to determinatlion of the first
branching from the fundamental path (the bifurcation point) 1s
the familiar stability condition that the second variation of
the potentlial energy be zero at such a polnt. The equlilibrium
equation (Equation 2) represents the first varlation of the
potential energy and by applying the second varlation one ob-
tains the following condltion at A = AC

Det = | [K] + 2 [Nl(A)] + 3 [N2(A)] | =0 (6)

where Det symbolizes the determinant of the indicated matrix.
The factors 2 and 3 on [Nl] and [N2]arise from imposition of
the second variation; this can be seen from the indicial form,
Equation 2a, which 1s in effect subjected to a differentiation
with respect to Ar (r = 1,3,k,2) in application of the varia-
tion.
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Figure 2 1llustrates the manner 1n which the above condi-
tlon 1s employed 1n identiflcation of the bifurcation point.
Figure 2a shows a representatlve load-parameter-displacement
(A-A) plot while Figure 2b shows the corresponding variation
of Det with A. Thus, Det > 0 for 0 < A < A® and Det < 0 for
A > AC. By establishing m solution polnts to elther side of
Ac, Lagrange interpolation can be invoked to produce an expres-—

sion for
i-1, m Det-Det

(T Detijet ) A (7)

i=1l j=1, J=i+l i
where Deti and Ai denote the corresponding values at the ith
load level. From Eq. (7), the bifurcation load A% 1s calculated
by setting Det=0, l.e.
A

o)
[
Ear k=1

c—
= Mpet = 0

Since the displacements and thelr derlvatlves at A% are needed
for determination of the postbuckling path, they are also cal-
culated by 1interpolation.

m J-1, m X—Ak J
A0y = 1 (Com oo ) A (8)
J=1 k=1, k=J+1 "k “J i
where Ai denotes the value of Ai at the Jth load level AJ.

Then the desired displacements Ag are found by settiling A=AC.

The derivatives of Ai are found by direct differentiation of
Eq. (8) with respect to A and evaluation at A2C.

V. POSTBUCKLING ANALYSIS
The approach to postbuckling analysis is through applica-

tion of a method in the class of '"statlec perturbation” tech-
niques.(7) The analysls furnishes the shape of the initilal
postbuckling path through the critical point using, as basilc
data, the load parameter at bifurcation (Ac), the displacement
vector of the fundamental path at bifurcation ({2°}) and deriva-
tives of the latter with respect to the load parameter.

Figure 3 1llustrates in a representative A-A space the
circumstance where a single postbuckling path emanates from the
first critical point. 1In establishing an analytical description
of this path we describe the displacement state by means of a



r(8)

“sliding coordinate representation

{A} = {8} + {sP} (9)

where now {A} describes displacements on the fundamental path
and {Ap} gives the displacements on the postbuckling path with
the fundamental path as a reference base. Thus, a mapping of
the postbuckling behavior in A - {Ap} space is effected with
{a} =
To obtaln the equillbrium equatlon in terms of the new

coordinates, we substitute Equation (9) into Equation (2). To
designate this operation 1t is convenient to revert to indiclal
notation with {A} = J’ {al = Zj and {AP} = A? since 1n effect-~
ing the products A;A, and A;A A, the term A, = (Zﬁ + A?) can

J k1
be treated as a binomial in conventlonal manner. Thus we have

K1335 + KiJA§ + Nijk(Zj + A?)(Kk + AD)

x Py(x Py(x Py -

Nijk2 (AJ + AJ)(Ak + Ak)(A2 + Az) APi

(10)
and, expanding and collecting multipliers of A?
(KijAJ + NiJk AJAk + Nijkz AJAkAz - APi)
~ N p

+ (KiJ + 2N1Jk A, + 3Nijk2 A, Az) AJ (11)

+ (N ) aP AP + AR AP AP = ¢

13t WNagrely) 43 Bk * Nygpe 87 Oy Ay

Since the fundamental path satisfies Equation (2), however, the
first term 1ln parentheses equals zero. Hence, the equilibrium
equation 1in the new coordinates 1s given by

(KiJ + 2NiJk Zk + Nijkl A )AJ
=~y D D D D _
*Nygp ¥ 3Nggpp 8g) 85 A + Nygpg AJ Ay 8y =0 (12)

Although previously described computations (Section III)
describe the fundamental path by discrete solution polnts, an
analytlcal representatlion 1s now necessary. Thus, a Taylor
serles expansion about the bifurcation polnt is 1invoked:

2
3 = {E° + (A»-2%){3'°} + % (A-A%)  {A"®} + ... (13)
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This expression must next be substlituted Into Equation 12.
In order to describe thils development 1n specific terms, the
decislion 1s made to truncate the series at the indicated (third)
term. Also, after substitutlon, terms hligher than third order
in AE or the product of Ag and (A-Ac) are discarded. Hence,
after substitutlion, we obtaln

2
T e Cyarn c P Y3
[KiJ + KiJ(X—A )+K1J(l-l Y]a% + (N

: 1k * NiJk(A-Ac))AS-Ai
+ Nygyp A? AR A% =0 (14)
where .

Kyy = Kyy + 2Ny Bp + 3N, 0 & K
Kiy = aNggp Bp° + 6Ny g0 Bi° &)
Riy = Nygy B° * 3Wyg (BR° B + By B3°)
Nigi = Nygie * 3Nygpp By
i = 3Nygp0 59 (15)

Description of the postbuckling path will now be accom-
plished, also as a series, but 1n the form

{aP} = elqy} + €2 gy} + €3 {ag} + ... (16)

where {ql}, {q2}, {q3}, ete. are displacement modes with addi-
tional propertles as described in the development to follow.
The scalar value € l1s the path parameter with meaning defilned
later. An expansion of the load parameter in the post buckling
regime 1s also requlred

A-AC = el + 92P2 + e3r3 + ... (17)

Where Fl, ete. are values to be determined.

At this Juncture 1t is of interest to note the contrast
with the conventlonal procedure in structural analysls, where
an expansion 1s employed only for the independent varilable,
such as {A}, and a solutlon is obtained for this variable for
given A. The solutlon process will involve incrementation of
€, from which both {A} and A will be evaluated.
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Substituting Equations (16) and (17) into Equation (14)
and collecting like powers of € ylelds

- 2 — -
€ (K_']_J q'jl) + € (Kij qu +'K1J rl q'jl + Nijk q'jl qk],)

+ €3 (K}

r q e wn 2
J °2 I+ KiJ q'j3 + ij ry q32 + K13 Pl qdl (18)

- - _
+ N1Jk (qu qkl+ qu qkz) + Nijkrlqjlqkl)

and, for ¢ # 0

K1J qu =0 (18a)

(Kij qu + KiJ Pl qu + NiJk qu qkl) =0 (18b)

— =, = 2 —
(Ky qJ3 + Kij(rijl + T qJ2) + Ky 0y qu + 2N1quJl qk2

(18¢c)

Nt
e T 9y, %
It is important to distinguish between {A°} and {ql}.
The former represents the displaced state of the fundamental
path ({4P} = 0) at the bifurcation point while the latter is
the elgenvector of the postbuckling path at the same point. In-
deed, {A°} is employed in the formation of Kij‘
Before considering the solution of (18a) to obtain a4 1t
must be noted that the rank of Equations 18a, 18b and 18c 1s
n-1, where n is the total number of degrees-of-freedom j = 1,...n.
To deal with factors related to this circumstance, we designate
€ as one of the node point displacements, say A?. We can employ
degree-of-freedom 1 without loss of generallty since 1t 1is al-
ways possible to rearrange the equatlons so that a chosen degree-
of-freedom appears 1in the first locatlon. The chosen degree-
of-freedom 1s generally the displacement at a prominent point,
say the transverse displacement at the center of a beam.
With € = Ap, in order for Equation 16 to hold, we must

1
have q;, = dy3 = Q34 = 0, etc., so that Equation 16 may now
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be written (in expanded form)

p
rA; . i 1 . 0 . ] 5 0o
= AP Py _
45 A1 4, + (47) a | * (A ] gy |+ .. (16a)
1 2 3

(- D) - ) (27

: - J . * J \ * 7

P )

A q q q

n n1 n2 n3

We may now return to determination of ay (= {ql} =
1oay, ...q, T). From (18a), it is clear thit {ql} 1s the
eigen&ector of [fij], normalized on qQ, (see Equation (16a)).
Next, Iy 1s evaluated using Equat}on (18b). To accomplish
thils, premultiply the equation by qJl and rearrange

q'jl Kij qu = - (Kij qjlrl + Nijk q’j]_ qkl) qil

Since qJ Kij 1s zero (Equation 18a), the left side 1s zero.
By solution of the remalnder
CNygx U3 Yy U

r, = (19)

1 7]
K13 91, Y
Substituting this result into Equation (18b), there 1s obtalned

N
13x 11, qjl qkl )

f15 9, 7 Mg %y % 7 Ry 9y dag fig oy, G0
19

The rank of this system of equatilons 1s n-1l, but it 1s recalled

from the above that q = 1 and Q= 0, and by imposition of

these conditilons Equat}on (20) mayzbe solved to yleld qu.
Similarly, we multiply Eq. (18c¢) by q11 to yileld

2 —
K" q q
1 g U,

+ 2N

r. X,q, b +r, X!, q, q, + T a; 9, 4d
174y P17, 2 713 "1.794 13k Ky kg

+T ¥ Nigwe 91,9, %, %, 7 °

N!, a, a, q
1 713k "1, 7, 7Ky 1%



1k

From which,

=1 = 2 = —
r, = ———=—— (I,K}!,q, q, +I'T Ki, q, q, + 2N d, 4, 4
A M350, Ty Bty 13k “1479, 'k,
131,73,
Nt
F TN g 9 9 %, Y Nijquilqjlqquzl) (21)

and, q1 can be determined accordingly

3
Continued application of the above procedure would permit

development of terms to any order in Equations (16) and (17).
To synthesize the present results for the first two terms of

Equation (17) 5
-D 2 D D D
% = AP 1y _ o(pPy 1 1, 1 1
A=A Al ( ) ) (Al) 5 ( 5 D3 + 5 Du + D5 ) D6 + D7)
2 2 Y2 D, 2
(22)
where the scalars Dl’ .o D7 are (using Eqgs. 15)
Dy = Nygx .9, %,
D, = K!
2 14 qilqjl
D, = K!
3 3 %1,%,
D, = K"
l 13 qilqjl
D. = 2N a, 4, q
5 13k #1935, %,
= N = AC
Pe = Vigie 91,9, %, 7 Mijke by U, 9, %%,
b = (23)

N a, 9; Q, Q
7 1ke 41,95, %, Uy

Equations (16a) and (22) are the desired post-buckling load-
displacement relations. Note that more complex forms could have
been obtalned by choosing more terms.
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VI. EFFECT OF IMPERFECTION

In the presence of geometric Iimperfection or loading ec-
centrlicity the behavior of the true structure differs from that
of the 1deallzed perfect structure and additional terms must be
added to Equation (2), the equllibrium equation. Consistent
with Kolter's approach to thils problem, we choose here to de~
scribe the imperfections 1n the form of a vector y{I} (y Ii in
indicial notation), where Y 1s the magnitude of the imperfec~
tion and {I} is a vector of relatlive nodal imperfections, i.e.,
a listing of the inltial dlsplacements at the respectlve degrees-
of-freedom but in normalized form. PFurthermore, we multiply

the vector of lmperfectlions by the loadlng parameter A and
treat the result as an "equivalent loading”". Thus, the equilib-
rium equatlions are now

KiJAJ + NiJkAJAk + NiJkQAJAkAR = APi + Ayli (24)

The approach to the solutlon of the above equatlions follows
closely to that of the precedlng section. With the introduction
of the sliding coordinate, Equation 11 becomes

~ = &y AD
(Kyy + 2Ny B+ 3N, B F)) of
= yADAD P,\D,D _
ANy P3Ny gy B A8 ¥ Ny g 858080 = AvTy (25)

To proceed as before, the fundamental path 1s again expanded
into a Taylor series as 1in Equation (13). Upon substitution of
this Taylor series into the equation (25), one obtalns in place
of Equation 14

2
74 1 c Pl c p N 1

= xyxi (26)

CyyaPAP
(A=27)) 858

AP

P
ATA 0

D
* Nygke B50%

Now, the serles expansions of Ag and (A-1%) (Equations 16
and 17) are again employed. These are substituted into Equation
(26) and in the grouping of terms the term AyIi i1s assigned to
the group of terms of order e2. Then, the resulting equations
are
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KiJ q'jl =0 (273)
-— — — _ M =
Kig 9, ¥ Rig Tody, ¥ Nagie 9y % - 52D I3 =0 (27p)
- — ) wa 2
KiJ qJ3 + K'(I‘2 qu + rl qu) + KiJ Pl qJ1+ 2NiJk quqk2

+

N T U % T Nagee 9, %, %, = 0
(27c)

Again dy, (= {ql}) 1s the eilgenvector of Kij' To determine
Fl we also adopt the procedure used previously in conjunction
with Equation (18b) and multiply {ql} into Equation (27b). One

obtalns
Py Kiy ag ay + Nyqp 95 95 9 - l% Iy 95 =0
191 191 % ¢ 1
" Ay
Nigk¥, 93, %, * 2 1% I.q
1 ¢ 1Dy . 1%y
or I'l = — = ) + JE ) (28)
: K, a, @ 2 € 2
13 "4,7°9,

and, by substitution of this expression for Fl into Equation
(27b), there 1s obtained
2 .

a =4q + q ~AY
Jo a1 ez |
where qJ and qJ are the solutions of the following equa-~
21 22

Ay (29)

tions: D
Ryyag, 5> Kiy 9. - (29a)
21 P2 J1 7 Nagie 93, %y
g 119 K + I (29Db)
13 Y4,, 7D, f1 Y, T h 9

Note that qJ is identical to qJ In the postbuckling analysis
of the perfezf structure. Again,ij and q are determined
to withlin one arbiltrary constant and2%he condf@ion q; = 0
yields 22
q =0, q =0
oy 77 o

The value of T2 is determined from Equation 27c, as before,

by multiplying the latter by {ql}. The resulting equation 1is
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l1dentical to that previously glven and by substitution of
Equation (27c¢) and solution for P2-there is obtained

N 2 Ay
Ty = - D2[(D3+D31 XL 5)r, + Dy 1,7+ Dp+Dgy . + IDg*D,]
(%) (49
(30)
= ] = 2N
where D Kij qil q122 and D51 ZNiququdlquz' We
now obtaln speclflc formulas for the postbuckling path by
substituting ¢ = Ag and the solutlons for Pl, F2, ay and a4
into Equations (16) and (17). There results 1 2
2
P _ AP p
AY = AT - q, + (AY) ¢ + Ay q (31)
1 1 il 1 159 122
and Ayqui 2 D -2 D A2Y211qi -2
e Il L U S 1)
2 2 2 2
Ay -1 A1y, DpDy Dgy Dy D
1 p 1 1 51 - 31
2 2 2 2 Ijq4 1594
2 1 1
Dl p P e 1 Dl Dl
-5, A7 - (87) 5; [- 5; (D +D6) + (5—) * Dy+D+ ] (32)

Since Yqui I1s small and A 1s of the same order as Ag when Ap
i1s small, t%e first two terms 1in the right are of the order

of (Yliqi ) and therefore can be neglected. Equation (34)
then redu&es to

AvI,q AvI,a .
N D q a
A . p, D2 2 1%, 2 1%, P2
2
(AE) D, D, C
- D, »[- 5, (D +D6) + (5= ) Dy+Dg+ D,] (33)

Equations (31) and (33) constitute the 1oad-displacement rela-
tion. The 1limit point can be determined from a plot of this
relation.
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VII. EXTRAPOLATION METHOD FOR CALCULATION OF LIMIT POINT

In practical applications to structures without defined
initial imperfectlons the analyst does not know in advance
whether bifurcation will occur, in which case the foregoing
procedures apply, or if a snap-through 1imit point sltuation
(Figure 1lc) will be encountered. In elther case the advance
along the fundamental path from the inltiation of loading will
progress towards a stiffness matrix with zero determinant,
since this condition applies equally well to bifurcation and
limit points. TFor snap-through, however, the analysis for the
first load level beyond the limit point will yield a meaning-
less displacement vector.

With this information, the analyst ldentifies the possi-
bility of a snap through situation and may attempt definition
of the load intensity and the displacement vector at the limit
point by an extrapolation of the data obtained at the already-
obtained solution points below the limit point. As indicated
above, the determinant of the total stiffness matrix 1s zero
at the limilt point and in addition (see Figure 2b) there is a
stationary point on the A-Det relationship, i.e.

dai -
a(oety = ° (3%

A series representation of A versus Det may be written

in the form

A =Dby + b (Det) + b, (Det)2 + ....+ b, (Det)” (35)

0

where m 1s the number of fundamental-path solutlon polnts
employed and bO ....bm are coefficients to be determined. By
application of Equation (3uhb1 = 0. Then, a system of simul-
taneous equations for calculation of bo, b2, .o bm 1s estab-
lished by evaluation of Equation (35) at each of the m points.
E.g., at the typical point 1 on the fundamental path

_ 2 m
xi = by + b, (Det)i ooy (Det)i (36)

This ylelds a system of m equations whose solution furnishes

the coefficlents bo, b2, cas bm' The 1limit point is computed
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by setting Det to zero in Equation (35). Thus, at the 1limit
polnt, A = bo.

An alternatlve to the above 1s the procedure devised by
Haftka, et a1(3), in which the geometric nonlinearities ([Nz])
and all terms of [Nl] except those assoclated wilth linear
stabillity analysis are treated as initial imperfections 1in a
perturbation analysis. If the nonlinearlities are moderate
throughout much of the prebuckling state a simple assessment
of these "initial imperfections" at the respective load levels
is sufficilently accurate and the procedure should be far more
efficient than that which 1s given above. When the problem 1s
highly nonllnear, however, the accurate determinatlon of the
"initial imperfections™ requires the same effort as in the present
method and 1t would appear that no advantages are galned by 1in-~
voking a perturbation procedure.

Extension of the above concept to the case of a structure
with 1nitlal imperfectlions 1s dlscussed in the Concludling Re-
marks (Section IX).

VIII. ILLUSTRATIVE EXAMPLES
1. Clamped Thin Shallow Circular Arch
Detalls of the solution procedure for this and the other

two 1llustrative examples are presented in the Appendix. The
present sectlon is devoted to a general description of the
respective problems and the significant aspects of the results
obtalned.

The first problem concerns instabllity of the thin shallow
circular arch with clamped ends (Figure U4). This problem has
drawn much attention in the literature of geometrically nonlinear
and postbuckling analysils because it is perhaps the most sophis-
ticated structure for which "exact" solutions have been obtained
(14,24). Our objective in performing this example is to verify
the accuracy 1in determination of the bifurcatlion point follow-
'1ng upon a nonlinear fundamental path by comparison with the
exact solution, and to demonstrate predlction of behavior for
both perfect and imperfect forms of the arch by use of the
present perturbatlon method.
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The geometry of the arch 1is characterized by the parameter
R®02/h and thils parameter also governs in part the form of
buckling, i.e., snap-through or bifurcation.: The dimenslons
chosen here yleld a value of 10.0, the same value employed in
Reference 14. The finlte element representation consists of
elght equally-spaced arch elements whose formulation 1s detailed
In the Appendix.

In the case of unlform radilal loadlng of intensity Po, for
the chosen geometric parameter, bifurcation occurs prilor to
snap-through as illustrated in Figure 5 by solld lines for the
classical solutlon. Numerical results are also shown 1ln this
figure. The direct 1terative scheme discussed in Sectlon III
Is used to yield the solutlon points on the fundamental path
as given by the circled polnts. Also, Figure 6 shows the calcu-
lated stabllity determlinant at each load level., Lagrangian
interpolation gives the bifurcation load A% = 1.9075, which 1s
within 0.2% of the exact value.

The arch buckles 1nto an asymmetrlc shape and postbuckling
load-displacement behavlior 1s represented by a straight line
(Figure 5). The exact solution gives -3.851 as the slope of
this line whille the slope found by the present perturbation
method 1is -3.925, an error of less than 2%. Thus, the present
numerilcal method is 1in close agreement with all aspects of the
classical solution. Solution efficiency considerations are dis-~
cussed 1n the Appendix.

In order to examlne the snap-through buckling case we add
the effect of an applied moment at mid-span. Limlit polnts cor-
responding to different magnitudes of thils moment are determined
by using the perturbation method and treating the moment as an
imperfection. The resulting load-deflection curves are plotted
in Figure 5 and the limit polnts vs. imperfectlion are plotted
in Filgure 7. No alternative solution is presently available
for comparison.

2. Beam on Nonllnear Foundation

The problem consldered here 1s an axlally-loaded beam on

a nonlinear elastic foundation (Figure 8). It is of interest
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to note that this problem has been employed in the performance
of probabilistic analyses of an infinite beam with random in-
itial imperfections.(ES) Here, the purpose of thils example 1s
the comparison of four different methods for determination of
the 1limit point: (a) the present perturbation method, (b) extra-
polation from the 1iterative solution (Section VII of this paper),
(¢c) Thompson's "conventional" perturbation method(ll) and (d4)
Thompson's improved perturbation method.(g)

The nonlinear foundation modulus for the beam 1s given by
klw - k2w2 - k3w3, where w is the transverse displacement and
kl, k2, and k3 are spring constants. kl gimulates the linear
stiffness [k]; k2 and k3 yileld matrix coeffilcients which cor-
respond to the [nl] and [n2] geometric stiffness matrices,
respectively. Filve dlfferent combinatlions of these constants
were employed for the subjJect numerical solutlons, as follows:

h 5 6 2
kl/El/L k2/EI/L k3/EI/L Pcr/EI/L

I 16 0 16000 11.49

11 160 0 80000 26.09

2 IIT 16 500 0 11.49
© Iv 16 500 ~1000 11.49
v 16 500 1000 11.49

In Cases I-III either k2 or k3 1s set equal to zZero to
simulate cases where [nl] and [n2], respectively, are zero.
Cases IV and V correspond to the general.nonlinear finite ele-
ment formulation of a non-symmetric structure. The above listing
also gives the critical loads as found in Reference 26.

In each case (I~V) the initilal deviation of the complete
beam 1s assumed to be of the form Wy = T%% sin E%, where the
imperfection parameter takes on values 0.5, 1, 2, 3, 5, 6, 7, 8,
9 and 10. As 1n the first example, the finite element ideallza-
tion consists of elght equal-length elements.

In the presence of imperfection, the axially loaded beam

exhlblts a snap-through type of bucklling due to ﬁh@ continuously
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weakening foundation modulus klw - k2w2 - k3w3. Figure 9 shows
the foundation modulus for Cases I-III. A typical load-displace-
ment plot l1s shown in Pligure 10 for Case IV for values of

w = Yo of 0 and 1.0, demonstrating the nature of this ef-
fect,

Curves of limit points vs. the imperfection amplitude
w are plotted in Figure 11 for Cases I-III. Close agree-

©m
men%xbetween the two methods developed in thls report (perturba-

tion and determinant extrapolation) are observed, whlle the
"econventional" perturbation method of Reference 11 produces
larger error with larger 1lmperfection. In using Thompson's
improved perturbation method (Reference 9), the procedure 1n-
volves the calculation of a single imperfectlon parameter on
the basls of a preselected value of limit load. By taking the
1imit points computed in the present perturbation method as
glven input,the corresponding limit loads were calculated with
the formulas in Reference 9. No significant differences from
the present results were obtained so that the data glven in
Figure 11 for the "Perturbation™ method can be taken to apply
to both procedures.

For the more general cases (IV and V), with three non-zero
spring constants, only the results of the present methods are
avallable slnce no expliclt formulas for these cases are avail-
able in References 9 and 11. The present results are glven in
Flgure 12.

In using the extrapolation method in determination of the
limit point as depicted 1n Filgure 2, error estimation 1is in
general not possible. The numerical results summarized in
Table 1, however, show only a 5% maximum discrepancy between
the extrapolated 1limlt points and those obtained by the present
perturbation method.

3. Flat Plate Post-Buckling
The flnal example refers to the postbucklling behavlior of

a perfectly flat simply-supported rectangular plate under uni-
axlal compression (Figure 13). The plate 1s assumed to be

free to displace in 1ts own plane. This problem possesses a
trivial prebuckling displacement state (for transverse displace-



TABLE 1:

BEAM ON NONLINEAR ELASTIC FOUNDATION.

VALUES OF NORMALIZED LIMIT

POINTS (Xu/lc) VERSUS Wo

max
100y
19 =
Omax L
* 0 0.5 1 2 3 4 5 6 7 8 9 10

a 1 0.679 0.553 0.475 0.417 0.375 0.338 0.308 0.287 0.263 0.248
I b 1 0.779 0.680 0.555 0.475 0.372 0.336 0.308 0.284 0.263 0.243
1 0.739 0.585 0.342 0.136 -0.213 -0.370 -0.519 -0.660 -0.794 -0.925
a 1 0.599 0.470 0.384 0.330 0.291 0.256 0.236 0.216 0.198 0.182
IT b 1 0.725 0.611 0.477 0.395 0.297 0.264 0.239 0.218 0.200 0.185
1 0.659 0.459 0.142 -0.123 ~0.577 -0.782 ~0.975 -1.160 -1.330 -1.522
a 1 0.679 0.571 0.510 0.461 0.423 0.389 0.368 0.343 0.325 0.307
IIT b 1 0.761 0.680 0.582 0.517 0.431 0.399 0.374 0.351 0.332 0.313
1 0.728 0.614 0.458 0.329 0.134 0.053 -0.024 -0.094 -0.161 -0.224
Iy a 1 0.665 0.556 0.495 0.403 0.354 0.347 0.325 0.305 0.287
b 1 .752 0.669 0.566 0.499 0.410 0.379 0.353 0.329 0.309 0.291
v a 1 0.695 0.588 0.537 0.455 0.428 0.388 0.384 0.363 0.348
b 1 .765 0.690 0.598 0.538 0.460 0.431 0.407 0.387 0.368 0.352

¥SOLUTION PROCEDURES:
a: Extrapolation Method (present report)

b: Perturbation Method (present report)

c:

Method of Ref. 9.

£e
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ments), the bifurcation load is calculated accurately by use
of linear theory, and because theoretical solutions(27’28)
are avallable for postbuckling behavior. It has been chosen
for analysis 1n thls study for the sake of comparison of the
perturbation method with the latter and because 1t 1introduces
the finite element modeling of a contlinuum structure (a plate)
as opposed to the finite element modeling of discrete struc-
tures (beams, arches) as in the preceding examples.

The analysls of the problem 1s performed with use of one
element, representing a gquadrant of the plate. The bifurca-
tion point, calculated in a linear stabllity analysis, 1s found
to be 36.29 1b./in., compared to the classical result(26) of
36.11 1b./in. (0.5% error). The postbuckling path calculated
by the present perturbation method 1s plotted in Figure 13,
together with Coan's resultsﬁ27). The two solutions are 1in

close agreement.
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IX. CONCLUDING REMARKS

Procedures for filnite element analysis of geometrically
nonlinear problems, extending over the prebuckling and inltial
postbuckling regimes, snap-through buckling, and accounting for
i1nitial imperfections, have been presented. These procedures
fall into two general categories: a perturbation method and a
method of determinant extrapolation.

The perturbation method corresponds closely to Thompson's
procedure(g); the methods differ in detalled application 1n the
determination of limit points of imperfectlon-sensitive struc-
tures, where the present method 1s belleved to furnish a more
efficlent route to the calculation of the 1limit point for given
Imperfection data. The method of determinant extrapolaticn,
developed here only for the case of limit point analysis, 1is

a new departure for the calculation of such polnts. The method
1s based upon a slimpler algorithm than the perturbatlion approach,
but 1s computatlonally more expensive in applicatilon.

Both approaches, as presented here, are quite limited i1n
their range of representation of load-displacement behavior.

By 1ts nature, the perturbation method applies only in the
vliecinity of the filrst branching point. The determinant extrap-
olation point method does not extend beyond the limlt point.

It should be feaslble to accomplish this extenslon by the
decrementation of load upon reachlng the limit point- this
consideration 1s currently being explored. Another limitation,
pertinent only to the perturbation approach, relates to stabll-
ity phenomena with multiple branching paths at the first branch-
ing point. A classical example of this situation occurs in the
buckling of an axially-compressed cylinder when the pre-buckling
state is linear. Extensions of the present perturbation method
to thls condition are also in progress.

All computations of the fundamental path (or pre-limit-
point path in the case of the determinant extrapolation method)
were performed with use of a direct-iteration algorithm. As
the survey by Haisler, et al(ls) has shown, this algorithm has
not been favored by other analysts dealing with the subjJect
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problem. This 1s apparently due to the relative inefficlency
of the method 1n comparlson with alternatives, e.g., Newton-
Raphson lteration. A higher-order dlrect iterative scheme was
dlscussed herein but was not applled to the problems analyzed.
The accuracy of the subJect procedures was verifled by solutlon
of a series of problems. These problems are of quite simple
form when measured agalnst practical deslgn analysis sltuations,
but are nevertheless relatively complex from the standpoint of
numerical computatlons because of the complexity of the phenomena
represented. Also, these problems have been employed 1n studies
of procedures alternative to the subject procedure and therefore
represent a useful basls of comparlison. A computer program for
shell stability analysls has been developed as part of the
present work; results of thls effort are described 1n Reference
30.

The relative efficiency and accuracy of the subjJect proce-
dures and various alternative approaches (e.g., references 3,
9, 10) remaln open questions. In view of the inability of
analysts to agree upon the optimum procedures in the restricted
area of nonlinear prebuckling analysls, as disclosed in the
survey of Reference 18, 1t is unrealistic to expect the defini-
tlon of the most appropriate approach to postbuckling analysils
at the present tlme. These measures wlill be obtained only after
significant experience 1in practical application is recorded.
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APPENDIX
SOLUTION DETAILS FOR ILLUSTRATIVE EXAMPLES

1. Clamped Thin Shallow Circular Arch Under Uniform Load
The state of strain 1n this structure (see Figure A-1) is
completely described by the axlal strain of the neutral axis,

€9 for which the strain-displacement equation is

< 1 _ 1 2 _
€ = R (w,e u) + EE§ (u,e) (A-13)
and the curvature of the neutral axis, K,
Usog
= —3° (A-1b)
R

where the comma denotes differentiation, u and w are the radial
and axlal displacements, respectively, and R is the arch radius.
With these expressions and for uniform radial loading of inten-
sity p, the potential energy is

I =1 + I + I A-2
P pl p2 p3 ( )

where, for the ith individual finite element Joining points
i-1 and 1 (see Figure A-1).

6 6
o= EA 1 R, - w2 4 (u,, %046 ~ /1 pu Rao
P 3 8 86

1 2R By 641

,-'e 1 2
n = EA S 7 g - w) (u,)? ae (A-3)
P2 2r B, ,
EA Oy 4

o= /1, 0" ae
p 3 8

38R B,

The finite element displacement functlions are the same
as used by Walker(29).
uo(1-1og3+15g”-6g5)+u5(£-653+8£u-3€5)

u =
+ur (32 363+ 3 - L)
+uy (1083 - 155" + 6£%) + uy (-ug3 4 et - 365)
R RTRC LA )
wo= g (1-387 + 26 4wy (e-26® + 83 4wy ge®-2ed)

wi (-2 + %) (A-4)
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where £ goes from zero to one along the ith arch segment
(Figure A-1).

Upon substltution of the above displacement functions into
the energy expression (A-2) and performance of the usual proce-
dure of 1ntegratlion and differentiation, one obtalins the equilib-
rium equations in the followlng standard form

Kygly + Nygpbydy + Nygpodsdpdp = APy (A-5)
Joint loads Pi are calculated on a "work-equivalent" basis.

For the specific problem under analysis, the properties
of the arch are R = 10 in., h = 0.0684 in., 6, = 15°, EA =
2.056 x 10% 1b, EI = 796 1b. in.2, so that the geometric.param-
eter Ro_°/h = 10.

Solution of the problem, based on an 8-element representa-
tion, proceeds as follows for the "perfect"” structure subjected
only to uniform radlal load p. Flrst, the prebuckling path is
determined by use of the lterative method described in Sectilon
I1T, wigh solutions obtalned at dlmenslonless load levels
»=pE2=1,1.5 1.8, 1.85, 1.90, 1.91, 1.95, 2.00, 2.05
and 2.10. The covergence criterion 1s defined as

P ] < n for all J. Four different values for n are used:

0.05, 0.01, 0.005 and 0.001. The number of iterative cycles
needed to achieve convergence at each load level for each n
are plotted in Filg. A-2. It 1s of 1interest to note that near
the bifurcation point (A = 1.9098) the number of cycles for
convergence lincreases sharply. However, monotonic convergence
is observed 1n all load levels below or above the bifurcation
point.

Based on the converged solutlon for displacements, the
determinant of the total stiffness matrix (Equation 6) is
calculated, with results as shown in Figure 6. Then, using
Equations 7 and 8, the bifurcation point, (Ac), displacements
(Ki) and their derivatives (4!, Zg) at bifurcation point are



easlly calculated. The value of A% 1s found to be 1.9075.
Next, the representation of post-buckling behavior 1s estab-
lished. After obtaining A%, Zi, Zi and A", the values of the
coefficient Dis can be calculated easily using Equation (23).
It is found that Ail
about the mid-span and D1 = D3 = D6 = 0. The path parameter
€ 1s chosen to be the central slope Asp and due to the anti-
symmetry of Ai , the central deflection Acl = 0. The load-
central deflection relatlion 1s represented by

» the bifurcation mode, 1s anti-symmetric

D _ Py . -
A, = (AS) Boo (A-6)
A-2% = - (Ap)2 L (0. + D) (A-7)
0 s® D, 75 7
After elimination of (Ag) , there 1s obtailned
D
P - _(y_3C v 2 . _
A, = ~(=2") (55 ¢ Bgo) (A-8)
577
From this the slope of the Ag -A relationship 1s obtained as
a(ab) D,
T = - (59~ B50) = - 4.361 (A-9)
577
Since the total deflection A = Kc + Ag,
aa, d&, a(ad)
o = ax + I = - ,U436-4.361 = -3.925 (A-10)

To simulate an lmperfect structure, an asymmetric imper-
fectlon is introduced in the form of a couple actlng at mid-

span (Figure 14). The additional term in the equllibrium equa-

tion (A-5) is then AyIi. The values of Ii's are zero except
for Il9 = 1. Calculation then proceeds along the lilne of
Section VI. In additlon to the coeffliclents calculated above
for the perfect structure we find D51 =0 and_A022 = 0 in the
central deflection. The load-central deflection relation 1s

then

_ p -
A, = By + (4D, (A-11)
AvI.qg (A
A=A 1741 52— (Dg+D,) (A-12)
AP . D 2

29
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Curves for vy = 0.1, 0.5, 1.0 and 1.5 are plotted 1in Flg.
5. The 1imlt points non-dimenslonallzed to —% for 0.1 < ¥y £ 1.5
are plotted in Fig. 7. A

2. Beam on Nonlinear Foundation

It 1s assumed that the beam sustains only flexural de-~
formatlon. Thus, 1t can be shown that the potential energy
in the presence of inltlal deviatlons W, and wlth a nonllnear
foundation modulus klw - k2w2 - k3w3 is

2 K
n = %— f (d—-g) ETdx + %— iy /wzdx- —g-/w3dx-%- ks [w”dx-
p L dx L L L

2 aw
A aw dw ~"o -
5 j;[(dx) + 2 37 —gglax  (A-13)

Assuming the displacement functlon of an element as

1¢1]
I ! i
we=, £ {a} = 53-2g2+g,g3—52,2§3~352+1,352—253, 2651 (a-14)
1
W?
with § = % and with w_ similarly represented as YLfeJ {AO} s
the total potentlal energy in matrlix form can be written as
I = %A [k1{A} + 9, [z1{A} 2 » [n,(a)1{a}
Yp T 2 2 VLTS ]
k

- 3.8 [ny(85) 118}

- 5 2.a,[nl{8} - 5 Ay, A [nl{a,} (A-15)

where, for each element

[kl = BT { {£} _fD dx
L
[nl = [ (€1} £  dx
L
(2] = [ {f} f,, ax (A-16)
[ny(A)] = g.{fe} LAy} {fe} dx

and [n,(A)] fz ({£_} Lf_1{8}) (AL {Ff } F y)dx



31

The potentlal energy of the full length of the beam 1s ob-
talned by summing the element potential energies, resulting in

I =23a {a} e (A} 2
p = Zub, [K] + — 8,020 - 5 4, 0N; () 1A}

k
- —%1AJ[N2(A){A} - 5 A8,[NI{a} - Ay,A [NI{A} (A-17)

From (A-17) the equillibrium equation is obtailned
(CKI+ky[21- [NI){8}-ky[N; (8) 1{a}-k,[N,(A%) 1{A} = yA[NI{A} (A-18)

which can be rewritten as (denoting A% the elgenvalue of

[K1+k, [2]-A[N])

([K]+k1[Z]-kc[N]){A}-(A—Ac)[N]{A}-szNl(A){A}ik3[N2(A2)]

= Yl[N]{AO} (A-19)

Since 1n thils case the pre-buckling path 1s trivlial, one can
proceed to post-buckling and 1imlt point analysis immediately
and identify {A} to Aﬁ's. A comparison with Equation (14)
reveals that

b7d = c we - 1} -

Kij = KiJ + kg ziJ - A NiJ, KiJ = —Nij, Kij = 0

ﬁijk AjAk = - k, [N (A)]lj r j = 0 (A-20)
1sz AJAkA2 = - k (N, (82 ))iJ i and I, = NiJAOJ

Thus, the previously derived formulas can be applied
directly to yleld all required information.
Computations are performed for combilnations of the param-

k k

eters k 55 3:

l’

ky = 0, kg # 0, ky # 0:

The load, structure ang behavlior are symmetric in the pre-buckled
state. With the term §gt94[Nl(A){A} = 0 it 1s found from Equa-
tion 23 that
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Dy =Dy =Dy =Dgy =Dg =0 and
= _,cC

Dy = (Kyy + Ky 259 = A'Nyy) ay.94,

Dy = = Nyy 93 9y,

P31 7 7 N1y 4,9,

D = -

. ks (N2(qquzl)) 13 91,9,

From computation, D3 = D31 = 0. The path parameter ¢ 1s iden-
tified to the central deflectlion Ac' The post-buckling path

therefore becomes D
AC-x = 5L A (A-21)
2
The load-dlsplacement relatlon for the corresponding imperfect
beam is yAIl;q 2
c ~ 1 il D7AC
AT=A = = DR + ) (A-22)
2°¢ 2

The 1imit point 1s calculated usling the following simple rela-

tion, whlch 1s obtalned by taklng AA . 0 and using equation
_ dA

(A-22) ¢

5 D2(AC—A)3/2
Y = - (A‘23)
3V§'XI /7
q _—
1 il D2
k3 = 0, asymmetric case:

In this case the structure or loading are not symmetric and
the fourth order term in total energy expression 1s zero.

Since D7
is also put to zero to give the same degree of accuracy. Hence,

1s zero in this case, the term assoclated with 82

the post-buckling path takes the even simpler form:
A-A = Ach/D2 (A-24)
where Dl = -kz [Nl(qkl)]ijqiqul (A—25)

The load-displacement relation for the imperfect beam 1s
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p, YA

2
c

q
i il

) (A-26)

2 A°D

2

The 1imit point 1s related to the imperfection parameter y by

_ (%02
th Aquil

D2 D2

Y (A-27)

k2 # 0, k3 # 0, asymmetric case:

This 1s the general case modeling the nonlinear geometric

matrices N, and N,.

1 5 Only DU and D6 equal zero in this case.

From computation D

37 D31 and D51 are negligible.
c Dl Ag
Then A=) = A, 55 + 55 (D5 + D7) (4-28)
c Ac Yquil Ag
AT-x = —— (D, =~ ) + == (D.+D.,) (A-29)
D 1 2 577
2 A 2
c
The limit points can be calculated from
2 3
-D,(A%-A)A 4D, AS+(D_+D.)A
y = 2 c 1c 5717 "¢ (A-30)
Al,qg
i 11
_le\/D12+d(Ac—A)(D5+D7)D2
with Ac = . )
+ A-31
3(D5 D7) (A-3
3. Flat Plate Postbuckling

The rectangular plate element
tions was origlnally formulated by
for large displacement—analysis of

(30) o,

The formulation

more recently been extended
shapes of shells.

polation functlons for the three displacement components.

employed for these computa-
Bogner, et al (Reference 31)
circular cylinders and has
deal with more general

1s based upon bicublec inter-
In

the case of the unlaxlally compressed flat plate without in-
1tial imperfections the resulting system stiffness matrix is
of the form
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K Am1.+ 0 N (g
__0 foo | (®] (M Vi, [ (%
_ .
+ 10 0 Am . pm1 (A-32)
o Wy |8 0 J

where the subscripts b and m deslignate bending and membrane
action respectively. For pre-buckling and bilfurcation the dis-
placements {Ab} are zero. Thus, the solution for pre-buckling
displacements is _

- _ -1

{Am} = A EKmm] {Pm} (A-33)
and bifurcation 1s determined from the condltlion

[K..1+2%N, 1| =0 (A-34)
bb 1bb

Upon calculation of A% and the assoclated elgenvector the post-
buckling analysis proceeds via evaluation of the coefficlents
Di of Equation 23. It is found that only D2, D5 and D7 are
nonzero, and for the central lateral displacement of the plate
(Ag) as the reference displacement, the normalized form of

Equation 22 can be written as
P
A/A. = 1 =[D,(D-+D.) h%/2°] (e—c—)2 (A-35)
c 27577 h
The post-bucklling response, in terms of X versus Ag,is

calculated from this equation and is plotted in Figure 14.
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