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I. INTRODUCTION 

The  analysis of instability  phenomena of complicated  thin 
shells  has  drawn  intensified  interest  due,  in  part, to the  dev- 
elopment  of  finite  element  analysis  procedures for such  struc- 
tures. (1) It is well  known  that  structures of this  class  col- 
lapse  at  load  levels  which  are  less  than  those  predicted  by 
linear  instability  theory  because  of  the  role  played  by  initial 
imperfections  and  geometric  nonlinearities. The extensive  ef- 
forts in the  development  of  theories to cope  with  the  latter 
considerations  have  been  surveyed  by  Hutchinson  and  Koiter 
Other  noteworthy  surveys  have  been  written  by  Haftka,  et a1 
and  Bienek ( 4 )  . 

( 2 )  
( 3 j  

Although  the  various  types of instability  phenomena  which 
might  occur in  the  complete  range  of  load-displacement  behavior 
prior  to  final  collapse  are  not  as  yet  fully  understood,  certain 
forms  are  known  and  are of considerable  practical  importance, 
especially  those  which  occur in the  earliest  stages  of  loading. 
These  are  illustrated in  Figure 1. Curve a applies  to  "perfect" 
structures  and  represents  the  case in  which  the  structure  first 
displaces  along  the  path  defined  by  OAB  (the  fundamental  path) 
and  bifurcates  (or  branches)  at  the  Point A to another  path, OC. 
In CoratrBat to a rising  postbuckling  path,  as OC, a descending 
path OD (as  pictured in Figure  lb)  may  be  encountered. 

When  the  structure  possesses  fabricational  imperfections 
the  load-displacement  behavior  follows  the  paths  indicated  by 
dotted  lines.  The  structure  with a rising  postbuckling  path 
will  have  strength  exceeding  the  bifurcation  load.  The  strength 
of an imperfect  structure  with a descending  postbuckling  path 
in  the  perfect  state  will  not  achieve  strengths as high  as  the 
bifurcation  load.  Such  structures,  under  the  appropriate  load 
condition,  are  termed  "imperfection  sensitive"  and  the  maximum 
load  attained  (Point E) is  termed  the  "limit  point". 

A 'non-bifurcating  load-displacement  behavior  may  also  occur 
for a structure  assumed  to  be  devoid of  imperfections  and  may 
take  the  form  shown in Figure IC, which  is  similar  in  shape t o  
the  curve OE (Figure  lb) of the  imperfection-sensitive  structure. 
Thus, a limit  point is  again  encountered,  at G, and  the  buckling 
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phe-nomenon  is of the  'snap-through'  type. 
A landmark  development of procedures  for  establishing  the 

shape  of  the  postbuckling  path  and for  determining  the  limit 
point for  imperfection-sensitive  structures I s  due  to  Koiter. 
Using  the  concept of perturbations  from  the  bifurcation  point, 
this  approach  enables  an  efficient  definition of load-displace- 
ment  behavior  in  the  immediate  postbuckling  range.  Further  con- 
tributions  or  alternative  forms  of  these  concepts,  in  the  classl- 

( 5 )  

cal  vein,  have  been  presented by  Budiansky  and  Hutchinson , 
Sewell('l),  and Thompson ( 8 , 9 )  

(6) 

Extensions  of  Koiter's  procedure  to  the  format of finite 
element  analysis,  as well as  other  finite  element  approaches  to 
the  same  physical  problem,  have  appeared I. Morin ( 1 0 )  ap- 
plies a predictor-corrector  scheme in  calculation  of  non-linear 
prebuckling  behavior,  in  which  a  perturbation  approach is em- 
ployed  as  the  predictor  and  Newton-Raphson  iteration is employed 
as the  corrector. The  perturbation  approach, in both  the  pre- 
and  post-buckling  computational  phases,  draws  heavily  upon 
earlier  work  by  Thompson  and  Walker (I1). Thompson  has  also  ad- 
vocated  a  new  perturbation  approach  (Reference 9 )  for  the  subject 
type of problem.  Haftka, et a1 (3 )  propose  the  definition of an 
"equivalent  structure",  one in  which  the  nonlinear  terms  are 
treated as initial  imperfections,  in  order  to  exploit  the  con- 
cepts  derived  by  Koiter  for  imperfect  structures.  Dupuis,  et 
a1 , attack  the  solution of the  nonlinear  equations  in an 
incremental-iterative  manner. The work  by Lang (I3) is  a  direct 
adaptation  of  Koiter's  concepts,  including  retention of the 
condition of a  linear  prebuckling  state. 

thin  shells (I5) have  shown  that  the  assumption of a linear  pre- 
buckling  state  may  lead  to  inaccurate  results.  One of the 
principal  aspects of the  work  described in  this  report  is  the 
method of  determination of the  load,  and  displacement  state on 
the  fundamental  path, at the  bifurcation  point  following  upon 
a nonlinear  prebuckling  state.  The  information  so-calculated 

(12) 

Recent  analyses  for  both  idealized  structures (14) and for 
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furnishes the necessary  ingredients for an analysis  of  the  post- 
buckling or limit  point  behavior.  Additionally, a new  method 
for  calculating  the  llmit  point of a perfect  structure  is  sug- 
gested  by the method  of  pre-buckling  analysis. 

The starting  point of the present  small  strain-finite  dis- 
placement  formulation is the  definition  of  element  stiffness 
equations in the  Lagrangian  frame of reference. The element 
stiffness  matrices  extend  to  both  first-  and  second-degree 
geometric  nonlinearities  in  the  element  displacement  parameters. 
Then,  direct  iteration  is  used  for  solution of the  nonlinear 
algebraic  equations in the prebuckling  range.  Unlike  many  wide- 
ly  used  and  seemingly  computationally  more  efficient  procedures, 
direct  iteration  permits  calculation  of  the  fundamental  path 
beyond  the  bifurcation  point.  Definition  of  the  latter  is  ac- 
complished  by  interpolation  of  the  determinants  of  such  solu- 
tions  through the  zero  point. 

For postbuckling, and for snap-through  buckling  for  initial- 
imperfection  situations,  both  displacements and  loads  are  ex- 
panded  about the  bifurcation  point  of  the  perfect  structure in 
power  series in a single  parameter  which is related to the 
amplitude of the  eigen-function  in  the  deflected  shape  of  the 
structure. Upon  determination of the  series  coefficients,  the 
solution is a  parametric  representation  of  load  vs.  displacement. 

As indicated above, a new  procedure  is  devised  for  the 
case of the limit  point  analysis  of  perfect  structures. This 
procedure,  which  requires  little  more  than  the  calculation of 
the  determinants of the  system  (nonlinear)  stiffness  matrices 
at  various  load  levels  below the limit  point,  is  alternative 
to  the  perturbation-method-based  procedure of Haftka, et  al. ( 3 )  

The  report  is  organized  as  follows.  The  general  form of 
finite  element  force-displacement  relationships  and  of  the 
resulting  equations  which  describe  the  behavior  of  the  complete 
structure  is given in Section 11. It is presumed  that  a  dis- 
placement  (stiffness)  method  of  analysis  is  employed in des- 
cription  of  the  complete  system.  The  approach  to  determina- 
tion  of  the  nonlinear  pre-buckling  behavior,  through  a  direct 
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iterative  procedure,  is  presented in Section 111. Both  first- 
order  and  second-order  iterative  schemes  are  presented.  Section 
N is devoted to an examination of the  relationship  between  the 
load  intensity  and the  determinant  of  the  system  stiffness 
matrix  and the  use of this  data in the  calculation of the bi- 
furcation  load  intensity. 

The  approach  to  postbuckling  analysis,  through  application 
of a  perturbation  technique,  is  described in Section V and  the 
extension  of this  approach  to  cope  with  initial  imperfections 
is given in Section VI. Section VI1 is  devoted  to an exposition 
of the method f o r  limit  point determination  for perfect  struc- 
tures. 

Three  problems  are  solved in Section VI11 in  verification 
of  the  present  approach  and  for  the  purpose of comparison  with 
other  methods. The first  problem is that of the  shallow  arch. 
This case, for which an exact  solution  is  available,  illustrates 
the  use of the  direct  iteration - interpolation  method in 
determination of the  bifurcation  point  following  upon  a  non- 
linear  fundamental  path  and  demonstrates  the  prediction of 
behavior  for  both  perfect  and  imperfect  forms of the  arch by 
use of the  perturbation  method. 

The  second  problem  concerns an axially-loaded  beam on non- 
linear  elastic  foundation.  This  structure  evidences  a  linear 
(trivial)  prebuckling  behavior,  but  enables  representation of 
a snap-through  buckling  phenomenon  in  the  presence of initial 
imperfection  of  the  beam. A number of alternative  solution 
procedures  are  applied  to  this  problem  and  are  compared  with 
the  procedures  devised in this  report. 

The third  problem  studied  is  a  rectangular  uniaxially  com- 
pressed  flat  plate. The perfect  flat  plate  possesses a trivial 
prebuckling  displacement  state  for  displacements  normal  to  the 
plane of the  plate  and  the  bifurcation  load  is  calculated ac- 
curately  by  linear  theory. A postbuckling  analysis  is  per- 
formed  by means of the  perturbation  method, and the  results 
are  compared  with  a  classical  solution. 

Details of the  application of the  procedures  given  in  this 
report  to  the  arch,  beam  and  flat  plate  problems  are  described 
in the  Appendix. 
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Although  the  problems  solved  are  elementary  from  the  stand- 
point of finite  element  representation,  they  delineate  all 
features  of the more  complex  situations  and  are  among  the  few 
cases  which  have  been  studied  thoroughly  and  for  which  compari- 
son solutions  or  test  data  are  available.  Such  comparisons 
were  essential in a  study  addressed  to a class of problems for 
which a multitude of alternative  procedures  have  only  recently 
been proposed. 

Because of the  scope and  complexity of the  present  topic, 
emphasis  is  restricted  to  the  basic  aspects of finite  element 
procedures for  nonllnear  prebuckllng and  initial  postbuckling 
analysis.  Note  should  be  taken of at 1east.two other  critical 
and  equally  extensive  aspects of the  topic,  computational  ef- 
ficiency and  detailed  formulation of  finite  element  relation- 
ships  per  se.  These  and  other  facets of the  total  problem in 
practical  application  are  excluded  from  consideration  herein. 
11. ELEMENT  AND SYSTEM FORMULATIONS """"- 

The  purpose  of  this  section is  to  define  the  general  form 
and  characteristics  of  finite  element  stiffness  formulations 
for  geometrically  nonlinear  analysis. In accordance  with the 
above-expressed  intention to limit  the  scope of this  report  to 
the  procedures  for  pre-  and  post-buckling  analysis,  no  considera- 
tion  is  given t o  epeciflc  types of elements,  fields  for  specific 
element  representations,  the  selection  of  assumed  stress or 
displacement,  nor to the  formulative  procedures  leading to the 
detailed  finite  element  and  system  equations.  The  latter  con- 
siderations  are  examined in reference 10. 

(I6), the element  stiffness  equations  for  small  strain  non- 
incremental  finite  displacement  analysis  for  conservative  load- 

In accordance  with  concepts  detailed by Mallett  and  Marcal 

ings  and a Lagrangian  frame of reference  are of the  general 
form 

Ckl{A) + [n,(A)l{A} + [n,(A)l{A} = X IF) (1) 

A{F3 and {A} are  the  applied  loads  and  corresponding  dis- 
placements  (degrees-of-freedom),  respectively. X ,  the  loading 
parameter,  is  a  scale  factor  applied  to  the  "normalized"  load 

where 
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vector IF). The load  vector {F} is normalized in the  sense 
that  it  represents  only  the  relative  magnitude of the  loads 
corresponding  to  the  respective  degrees-of-freedom {A]. Thus, 
the  joint  loads  are  applied in fixed  proportion  to  one  another. 

[k] is the linear  (small  displacement  theory)  stiffness 
matrix. 

[n,(A)] is the  first-order  ('fgeometric")  stiffness  matrix, 
where  the  individual  terms  are  linear  functions of the  degrees- 
of-freedom {A]. A simplified  form of this matrix  permits  linear 
stability analysis, as  in Euler  buckling. 

[n,(A)l is the  second-order  ("geometric")  stiffness  matrix, 
with  individual  terms a quadric  function of the degrees-of- 
freedom {A). These  terms  arise  from  the  components of strain 
energy  which  are the first  derivatives of w  with  respect to the 
spatial  variables  raised  to  the  fourth  power. 

Upon  assembly  of  the  element  relationships  defined  by  Eq. 
(1) to form  a  representation of the  complete  structure,  (global 
representation)  the  following  equations  are  obtained 

CKIIA3 + CNl(A>l{A) + cN2(A)lIA} = A{P} (2) 

where  the  definitions of K, N1, N2 and P for the  global  repre- 
sentation  correspond to those  given above  for k, nl, n2, and 
F for  the  respective  elements. 

In indicial  notation,  Equation (2) becomes 

13 A 3 + NijkAjAk + Nijkl 4 j A k A 1 = API (2a) 
Indicia1  notation is especially useful in nonlinear  finite 

element  analysis  since  the  constants  of the problem (N and 

Ni j kl 
contrast to the  matrix  format  where [N,(A)] and [N2(A)1 are 
dependent on the  displacements and change  continually  during 
the  numerical  analysis  process. This aspect of  detailed  com- 
putation is discussed  by  Morin  (lo)  and Vos (17). It  should also 
be  noted  that  although one would  not  expect  symmetry in the 
matrix  forms of [Nl(A)]  and  [N2(A)], a symmetric  format  of the 
matrix  coefficients is achieved  by  proper  manipulation Of the 
basic  forms of these  matrices.  The  matrix  (Eq. 2) and indicial 

ij k 
) are  readily  identified  and can be  stored  permanently, in 
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(Eq.  2a) notations  will  be  employed  interchangeably  throughout 
this  report. 

111. PREBUCKLING  ANALYSIS 
A variety  of  methods  for  nonlinear  equilibrium  analysis 

have  been  explored in the  literature;  much of this  work  has 
been  summarized  by Haisler, et  al. (I8) A popular  choice  is the 
Newton-Raphson  method (’9) or its  variants (20), due to a  quadratic 
convergence  property.  The  Newton-Raphson  method  will  fall, how- 
ever,  at or  in the vicinity of the  bifurcation point.  Although 
procedures  have  been  devised  to  surmount  this  problem 
they  do  not  appear  appropriate  to  the  present  overall  approach. 
The  direct  iterative  method,  employed  herein,  presents no dif- 
ficulty  at  the  bifurcation  point  and  is  therefore  chosen  for 
performance of nonlinear  prebuckling  analysis. 

In the  direct  iterative  method,  a  solution  to  Equation  (2) 
will  already  have  been  obtained  at  the  load  level {P i-l), with 
corresponding  displacements {Ai-’], and  the  load  is  incremented 
by an amount  {AP)  to reach {P 1. Thus,  in the  analysis  at  the 
load  level {P 1 ,  the matrices [N,] and [N,] are  formed  on  the 
basis of {Ai’’} and Equation (2) is  written  in  the  form 

(21,221 

l 
i 

1 
[K]{Ail = X{Pi) - [N1(Ai-’)]{Ai-’1 - [N2(Ai-’)]{Ai-’} (3) 

where  the  superscript 1 on {A ) indicates  the  first  solution i 

in  the  iterative  determination of {A ) solving i 

We  then form 
2 1 1 1 1 

which can be  solved  for {A . In the  general (Jth) itera- 
tive  solution 

rK]{Ail = X{Pi) - [Nl(Ai) ]{Ail - [N2(Ai) ]{Ail ( 3 4  
i 2 

The  iterative  sequence  continues  until {AilJ is  within 
{AilJ-’ to  a  specified  tolerance.  It  should  be  noted  that 
direct  iteration  requires  only  the  inversion  of  the  linear 
stiffness  matrix  and  continued  re-formation  of [N,] and CN,]. 
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The proof of convergence  of   this 'approach  below t h e  b i f u r c a t i o n  
p o i n t  i s  g i v e n   i n   R e f e r e n c e  1 2 .  

D i f f i c u l t i e s  are encoun te red   i n  t h i s  approach when the  non- 
l i n e a r i t l e s  are s e v e r e .   S u c h   d i f f i c u l t i e s  are o f t en   man i fe s t ed  
'by c o n t i n u e d   i t e r a t i o n   i n  a loop  about  the convergent   so lu t ion .  
I n   s u c h  cases a n  Improved  procedure i s  t o  employ a higher-order  
I t e r a t i v e  scheme, which is  obta ined  by s u b s t i t u t i n g   E q u a t i o n  
(3a )   i n to   Equa t ion  ( 3 ) .  The r e s u l t ,   f o r  t h e  jth i t e r a t i o n ,  is 
of t he  form 

- C CNII~KI-lCNll + [Nll[K1-1[N21 
+CN,lcKI-lCNII + cN21CKI-1cN21 ]{A 1 (5) 

i 1-1 

i 3 - 1  
where [N,] and [N,] are formed  on the basis of  {A ] . 
Equation 3 ,  enhances the  e f f i c i e n c y  of t h e  i t e r a t i v e   p r o c e s s .  
For t h i s  reason ,  the a n a l y s i s  i s  recommended t o  be performed 
a t  var ious   load   leve ls ,   ex tending   f rom a l e v e l   c l o s e   t o   z e r o  
load   th rough  to  a l e v e l  somewhat beyond the  b i f u r c a t i o n   l o a d .  

IV. DETERMINATION OF BIFURCATION 

The knowledge of a nea rby   so lu t ion ,  as f o r  {&'-'-) i n  

The basis of t he  approach   t o   de t e rmina t ion  of t h e  f i rs t  
branching  from the fundamental path ( t h e  b i f u r c a t i o n   p o i n t )  i s  
the  familiar s t a b i l i t y  cond i t ion  t h a t  t h e  second   va r i a t ion   o f  
t he  p o t e n t i a l   e n e r g y  be zero  at such a p o i n t .  The equ i l ib r ium 
equat ion   (Equat ion   2)   represents  the f i r s t  v a r i a t i o n  o f  the 
poten t ia l   energy   and  by apply ing  t h e  second  var ia t ion   one  ob- 
t a i n s  the fo l lowing   cond i t ion  a t  X = X c  

Det = I c K 1  + 2 CN,(A)I  + 3 C N 2 ( A ) l  I = 0 ( 6 )  

where Det  symbolizes t h e  de te rminant   o f  t h e  i n d i c a t e d   m a t r i x .  
The f a c t o r s  2 and 3 on [N,] and [N21arise from  imposit ion  of 
t he  second  var ia t ion ;  t h i s  can be seen  from the i n d i c i a 1  form, 
Equation 2a, which i s  i n   e f f e c t   s u b j e c t e d   t o  a d i f f e r e n t i a t i o n  
with r e s p e c t   t o  Ar ( r  = i , j , k , & )  i n   a p p l i c a t i o n   o f  the v a r i a -  
t ion .  



Y 

Figure 2 illustrates  the  manner  in  which  the  above  condi- 
tion  is  employed in identification  of  the  bifurcation  point. 
Figure 2a  shows a representative  load-parameter-displacement 
(X-A) plot  while  Figure 2b shows  the  corresponding  variation 
of  Det  with A .  Thus,  Det > 0 for 0 < X < Ac and  Det c 0 for 
X > A'. By  establishing  m  solution  points  to  either  side of 
Xc, Lagrange  interpolation  can  be  invoked  to  produce  an  expres- 
sion  for 

m  i-1,  m  Det-Det 
X =  I (  n 

i=1 j=1, j=i+l J .  Det -Deki 

where Deti and Xi denote  the  corresponding  values  at  the  ith 
load level,  From Eq. (7) , the  bifurcation  load X' is  calculated 
by  setting Det=O, i.e. 

Since  the  displacements  and  their  derivatives at Xc are  needed 
for  determination  of  the  postbuckling  path,  they  are  also  cal- 
culated  by  interpolation. 

m J-1, m X"Xk J 

j=l  k=l, k=j+l  k j i 
Ai(X) = I ( II X "X ) A  

where A i  denotes  the  value  of Ai at  the  jth  load  level X 
Then  the  desired  displacements A i  are  found  by  setting X = A  . J 'c 

The  derivatives  of Ai are  found  by  direct  differentiation  of 
Eq. (8) with  respect  to X and  evaluation  at A'. 

V. POSTBUCKLING  ANALYSIS 
The  approach  to  postbuckling  analysis  is  through  applica- 

tion of a method in the  class  of  "static  perturbation"  tech- 
niques. ( 7 )  The  analysis  furnishes  the  shape  of  the  initial 
postbuckling  path  through  the  critical  point  using,  as  basic 
data,  the  load  parameter  at  bifurcation (Xc), the  displacement 
vector of the  fundamental  path  at  bifurcation ((Ac)) and  deriva- 
tives  of  the  latter  with  respect to the  load  parameter. 

Figure 3 illustrates  in a representative A-A space  the 
circumstance  where a single  postbuckling  path  emanates  from  the 
first  critical  point. In establishing an analytical  description 
of this  path  we  describe  the  displacement  state by  means  of  a 
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"sliding  coordinate'' (8) representation 

{A) = {h) + EAP) (9) 

where  now { K )  describes  displacements  on  the  fundamental  path 
and 
the 
the 
{ zi-1 

{Ap) gives  the  displacements on the  postbuckling  path  with 
fundamental  path  as a reference  base.  Thus, a mapping  of 
postbuckling  behavior in X - {Ap) space  is  effected  with 
= 0. 
To  obtain  the  equilibrium  equation in terms  of the new 

coordinates,  we  substitute  Equation ( 9 )  into  Equation (2). To 
designate  this  operation  it  is  convenient  to  revert  to  indicia1 
notation  with {A} = Aj, ih3 = A and {Ap} = A' since  in  effect- 
ing  the  products A A and A A A the term A = (Xj + A') can 
be treated  as a binomial  in  conventional  manner.  Thus  we  have 

- 
j j 

j k   j k a  j  j 

and, expanding  and  collecting  multipliers  of A' 
j 

(KijKj ' Nijk j k A A + Nijk2 j k R 
" E K E - XP,) 

' (Nijk' 3Nijk%A2) *j 'k ' NijkE j k 2 
- P P  Ap Ap  Ap = 0 

Since  the  fundamental  path  satisfies  Equation (2), however,  the 
first  term  in  parentheses  equals  zero. Hence,  the  equilibrium 
equation  in the  new  coordinates  is  given  by 

(Kij + 2Nijk 'k ' Nijk2 k R j 
h x )Ap - 

' (Nijk ' 3Nijk2 "2' 'j *k ' Nijkfi j k R 
- P P  A' AP A' = 0 (12) 

Although  previously  described  computations  (Section 111) 
describe  the  fundamental  path  by  discrete  solution  points,  an 
analytical  representation  is  now  necessary.  Thus, a Taylor 
series  expansion  about  the  bifurcation  point  is  invoked: 

2 
(13) 
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This  expression  must  next be s u b s t i t u t e d   i n t o   E q u a t i o n  1 2 .  
I n   o r d e r  t o  describe th i s  development i n   s p e c i f i c  terms, the 
d e c i s i o n  i s  made t o   t r u n c a t e  the  series a t  t h e  i n d i c a t e d  ( t h i r d )  

term. Also ,  af ter  s u b s t i t u t i o n ,  terms higher than  t h i r d  o r d e r  
i n  A: o r  the  product  of A: and (A-X') are discarded. Hence, 
a f t e r  s u b s t i t u t i o n ,  w e  o b t a i n  

+ NijkR A' j A p  k A' R = 0 

where 

Descr ip t ion   of  t he  pos tbuckl ing  p a t h  w i l l  now be accom- 
p l i s h e d ,  a l s o  as a series,  b u t   i n  t h e  form 

€ A p )  = E{ql) t c2 (q21 t e3  Is3)  + .... ( 1 6 )  

where {q13, I q 2 } ,  { q 3 3 ,  e t c .  are displacement  modes w i t h  addi -  
t i o n a l   p r o p e r t i e s  as d e s c r i b e d   i n  t h e  development t o   f o l l o w .  
The s c a l a r   v a l u e  E is  t h e  pa th  parameter with meaning  defined 
l a t e r .  An expansion of t h e  load  parameter i n  the pos t   buckl ing  
regime i s  a l s o  required - 

A - A ~  = Erl + E r2  2 + € 3 5  + ... 
Where rl, e t c .  are va lues  to be determined. 

w i th  the c o n v e n t i o n a l   p r o c e d u r e   i n   s t r u c t u r a l   a n a l y s i s ,  where 
an  expansion i s  employed  only f o r  t h e  independent   var iab le ,  
such as { A 3 ,  and a s o l u t i o n  is obta ined  for this v a r i a b l e   f o r  

A t  th is  j u n c t u r e  it i s  o f   i n t e r e s t   t o   n o t e  t h e  c o n t r a s t  

g iven  X. The s o l u t i o n   p r o c e s s  w i l l  involve   incrementa t ion  of 
E,  from which both  C A I  and X w i l l  be eva lua ted .  
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S u b s t i t u t i n g   E q u a t i o n s  (16) and  (17)   into  Equat ion ( 1 4 )  
and c o l l e c t i n g  l i k e  powers of E y ie lds  

E (‘ij qj,) E (Kij qJ +.‘ij rl qJl i j k  qj, kl 
2 -  + R  S I  

2 

and ,   fo r  E: r’ 0 

E = o  
i j  q3,  

(18C) 
It i s  impor t an t   t o   d i s t i ngu i sh   be tween  { T i c ,  and  (ql). 

The fo rmer   r ep resen t s  the d i s p l a c e d  s ta te  of the fundamental 
path ( { A p )  = 0 )  a t  t h e  b i f u r c a t i o n   p o i n t  while t he  l a t t e r  i s  
the  e igenvec tor  of  the pos tbuckl ing  pa th  at  the  same po in t .   I n -  
deed, {Ec) i s  employed i n  the  formation  of  E 

must be  noted t h a t  t h e  rank  of Equations  18a,  18b  and  18c 4s 
n-1, where n i s  the t o t a l  number of  degrees-of-freedom j = 1, ... n. 
To deal  w i t h  f a c t o r s  re la ted t o  this  circumstance,  we d e s i g n a t e  

i j  
Before   cons ider ing  the s o l u t i o n  of ( 1 8 a )   t o   o b t a i n  q it 3 

E as one  of the  node  point   d isplacements ,  s ay  A:. We can  employ 
degree-of-freedom 1 without  loss o f   g e n e r a l i t y   s i n c e  i t  i s  a l -  
ways p o s s i b l e   t o   r e a r r a n g e  the  equat ions  so  tha t  a chosen degree- 
of-freedom appears i n  t he  first l o c a t i o n .  The chosen degree- 
of-freedom i s  gene ra l ly  the displacement  a t  a prominent   point ,  
say the t ransverse   d i sp lacement  a t  the  c e n t e r  of a beam. 

With 8 = A:, i n   o r d e r   f o r   E q u a t i o n  1 6  t o   h o l d ,  we must 
have 912 = 913 = q14 = 0,  e t c . ,  so  t h a t  Equat ion 1 6  may now 



be  written  (in  expanded  form) 

1 

16a) 

We  may now return to  determination  of q (= {ql)  = 3 
P 92  ***qnlJ T). From (18a),  it I s  clear th&t {q,) is  the 
eigenbector  of [K 1, normalized on q1 (see Equation (16a)) 

Next, I’, is evaluated  using  Equat4on (18b). To accompl ish 
this,  premultiply  the  equation  by q and rearrange 

J. 

j, 

Since q is zero  (Equation 18a), the  left  side  is  zero. 
By solut3on  of  the  remainder 

3 % 

A I 

Substituting  this  result  into  Equation (18b),  there is  obtained 

The  rank of this  system  of  equations is n-1, but  it is  recalled 
from  the  above  that  q1 = 1 and q1 = 0, and  by imposition of 
these  conditions  Equatlon (20)  may  be  solved  to  yield qj2. 

Similarly,  we  multiply Eq.  (18~) by q to  yield 

2 

i, 
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From which, 

' rlWij k qilqj lqkl + Nij kRqi '3 'k '11 (21 )  1 1 1 1  
and, q can be determined  accordingly 

i3 
Cont inued   appl ica t ion  of t h e  above  procedure  would  permit 

development o f  terms t o  any   o rde r   i n   Equa t ions  ( 1 6 )  and (17). 
To syn thes i ze  the  p r e s e n t   r e s u l t s   f o r  the f i rs t  two terms of 
Equation ( 1 7 )  

-D 
X - X c  = A: (-) 1 - (A:) 

2 

D2 
D3 ' 2 D4 D5 - D2 5 D6 t D7) 

D2 

where the s c a l a r s  Dl, ... D are (ubing E q s .  15)  7 

D6 - ' ijk qi lqj lqkl  = 3 N i j k a  '2 qilqj,qkl 
- "c 

D7 - N i j k E  qilqjlqklqRl 
- (23) 

Equations  (16a) and (22') are the   des i red   pos t -buckl ing   load-  
d isp lacement   re la t ions .   Note  tha t  more complex  forms  could  have 
been .obta ined  by  choosing more terms. 



VI. EFFECT OF IMPERFECTION 
In the  presence of geometric  imperfection  or  loading  ec- 

centricity  the  behavior of the  true  structure  differs  from  that 
of the idealized  perfect  structure  and  additional  terms  must  be 
added to  Equation (21, the  equilibrium  equation.  Consistent 
with  Koiter's  approach  to  this  problem,  we  choose  here  to  de- 
scribe  the  imperfections in the  form of a vector ~ € 1 )  ( y  Ii in 
indicia1  notation),  where  Y is  the  magnitude of the  imperfec- 
tion  and {I) is a vector of relative  nodal  imperfections,  i.e., 
a  listing of the  initial  displacements  at  the  respective  degrees- 
of-freedom  but in normalized  form.  Furthermore,  we  multiply 
the  vector of imperfections  by  the  loading  parameter X and 
treat  the  result  as an "equivalent  loading".  Thus,  the  equilib- 
rium  equations  are  now 

ij A 3 + 'ijkAjAk + NijkR A j A k A R = XPi + XyIi  (24) 
The  approach  to  the  solution of the  above  equations  follows 
closely  to  that of the  preceding  section.  With  the  introduction 
of the  sliding  coordinate,  Equation 11 becomes 

(Kij + 2Nij kAk + 3NijkR k R j 
h b ) Ap 

- 

To proceed  as  before,  the  fundamental  path is again  expanded 
into  a  Taylor  series  as  in  Ekuation (13). Upon  substitution of 
this  Taylor  series  into  the  equation (25), one  obtains  in  place 
of Equation 14 

3 

Now, the series expansions of A: and (X-Xc> (Equations 16 
and 17) are  again  employed.  These  are  substituted  into  Equation 
(26) and in the  grouping  of  terms  the  term  XyIi  is  assigned  to 
the  group of terms of order E . Then,  the  resulting  equations 
are 

2 
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( 2 7 ~ )  

Again q j l  (=  Is , ) )  i s  t h e  e igenvec to r  of iT To determine 
rl we a l so   adop t  the  p rocedure   u sed   p rev ious ly   i n   con junc t ion  
wi th  Equation (18b) and  mult iply {ql l  i n to   Equa t ion   (27b) .  One 
o b t a i n s  

i 3  

o r  
-D 1 - 

D2 
+ a 

€ 
2 

and, by s u b s t i t u t i o n  of t h i s  expres s ion  f o r  rl i n to   Equa t ion  
' ( 2 7 b ) ,  there i s  obta ined  

where q and q are t h e  s o l u t i o n s  o f  the  following  equa- 

t i o n s :  
j 2 1  322  

iT - 
i j  q j2 ,  

= -  
q 
kl 

(2%) 

Note that  q i s  i d e n t i c a l  t o  q i n  the  p o s t b u c k l i n g   a n a l y s i s  
of t he  per fee t  s t ruc tu re .   Aga in ,  q.j and q are determined 
t o   w i t h i n  one a rb i t r a ry  constant  and2khe  cond?Zion q = 0 
y i e l d s  I 2 2  

j 2 1  3 2  
3 

9121 
= 0, 91 = o  

22 

The va lue  of r 2  i s  determined  from  Equation  27c, as be fo re ,  
by mul t ip ly ing  the l a t t e r  by {ql). The r e s u l t i n g   e q u a t i o n  i s  



" . 

i d e n t i c a l   t o  tha t  previously  given  and by s u b s t i t u t i o n  of 
Equat ion   (27c)   and   so lu t ion   for  r , - there  i s  obta ined  

i n t o   E q u a t i o n s  (16) and (17). There 
J. I 

r e s u l t s  

(30)  
. We where D 31 = q j  qil qi2* and DFjl - - 21Ji j kqklq j 1qk22 

- 

now o b t a i n   s p e c i f i c   f o r m u l a s   f o r  the pos tbuckl ing  path by 
s u b s t i t u t i n g  E = A? and the  s o l u t i o n s   f o r  r , ,  r2, qi, and qi 

2 

A Y I  9 
+ (  i l ) ( A y )  - - 1 

D2 D2 
D - A: - (A:) 
D2 

L 

x Iiqi, 
2 2  

I 

D2 

Since yIiqI I s  small and X i s  of the  same o r d e r  as A: when AfJ 
i s  small, tAe f i rs t  two terms i n  t h e  r i g h t  a r e  of t h e  o r d e r  
of (y I iq i  and t h e r e f o r e   c a n  be neglec ted .   Equat ion  (34)  
t h e n   r e d u & e s   t o  

x-xc = - i ' (D3tD6 - D1'D4 - 

2 

A Y I  9 X Y I  q 
il 

A: D2 D2 2 D2 

2 
(A;) 2 
" 

D2 
C- (D3+Dg) + ("> Dq+Dg+DTI (33 1 5 D2 

Equations  (31)  and (33 )  c o n s t i t u t e  t he  load-displacement rela- 
t i o n .  The limit poin t   can  be  determined  from a p l o t   o f  t h i s  
r e l a t i o n .  



VII.  EXTRAPOLATION  METHOD FOR CALCULATION  OF  LIMIT POINT' 
In practical  applications  to  structures  without  defined 

initial  imperfections  the  analyst  does  not  know in advance 
whether  bifurcation  will  occur,  in  which  case  the  foregoing 
procedures  apply,  or if a snap-through  limit  point  situation 
(Figure IC) will  be  encountered. In either  case  the  advance 
along  the  fundamental  path  from  the  initiation of loading  will 
progress  towards  a  stiffness  matrix  with  zero  determinant, 
since  this  condition  applies  equally  well  to  bifurcation  and 
limit  points. For  snap-through,  however,  the  analysis  for  the 
first  load  level  beyond  the  limit  point  will  yield  a  meaning- 
less  displacement  vector. 

With  this  information,  the  analyst  identifies  the  possi- 
bility of  a  snap  through  situation  and  may  attempt  definition 
of the  load  intensity  and  the  displacement  vector  at  the  limit 
point  by an extrapolation of the  data  obtained at  the  already- 
obtained  solution  points  below  the  limit  point. As indicated 
above,  the  determinant of the  total  stiffness  matrix  is  zero 
at the  limit  point  and in addition  (see  Figure 2b) there  is a 
stationary  point on the X-Det relationship, i.e. 

dX 
do = o  (34 )  

A series  representation of X versus  Det  may  be  written 
in  the  form 

X = bo + bl  (Det) + b2 (Det)2 + . .. .+ bm (Det)m (35 )  

where  m  is  the  number of fundamental-path  solution  points 
employed  and bo .... bm are  coefficients to be  determined.  By 
application of Equation (34),b,  = 0. Then, a system of simul- 
taneous  equations f o r  calculation of bo, b2, ... bm is  estab- 
lished  by  evaluation of Equation (35)  at  each of the  m  points. 
E.g.,  at  the  typical  point i on the  fundamental  path 

Xi = bo + b2 (DetIi2 t . .. bm (Det I m ( 3 6 )  

This  yields  a  system of m  equations  whose  solution  furnishes 
the  coefficients bo, b2, ... bm. The  limit  point is computed 



by setting  Det  to  zero  in  Equation (35). Thus, at  the  limit 
point, X = bo. 

h'aftka,  et ad3), in which the geometric  nonlinearities ([N,]) 
and all  terms of [N,] except  those  associated  with  linear 
stability  analysis  are  treated as initial  imperfections in a 
perturbation  analysis. If the  nonlinearities  are  moderate 
throughout  much of the prebuckling  state a simple  assessment 
of these  "initial  imperfections''  at the  respective  load  levels 
is  sufficiently  accurate  and  the  procedure  should  be  far  more 
efficient than that  which I s  given  above.  When the problem  is 
highly  nonlinear,  however,  the  accurate  determination of the 
"initial  imperfections"  requires  the  same  effort as  in the present 
method  and  it  would  appear  that  no  advantages  are  gained  by  in- 
voking a  perturbation  procedure. 

An alternative  to  the  above  is  the  procedure  devised by 

Extension  of  the  above  concept  to  the  case  of a structure 
with  initial  imperfections is discussed in the  Concluding  Re- 
marks  (Section IX). 

VIII. ILLUSTRATIVE  EXAMPLES 
1. Clamped Thin Shallow Circular  Arch 

Details of the  solution  procedure  for  this  and  the  other 
two  illustrative  examples  are  presented in the  Appendix.  The 
present  section  is  devoted  to  a  general  description  of  the 
respective  problems  and  the  signlficant  aspects of the  results 
obtained. 

The  first  problem  concerns  instability of the  thin  shallow 
circular  arch  with  clamped  ends  (Figure 4). This problem  has 
drawn much  attention  in  the  literature of geometrically  nonlinear 
and postbuckling  analysis  because  it  is  perhaps  the  most  sophis- 
ticated  structure  for  which  "exact"  solutions  have  been  obtained 
(14324). Our  objective in performing  this  example  is to verify 
the accuracy  in  determination of the  bifurcation  point  follow- 
ing upon a nonlinear  fundamental  path by comparison  with  the 
exact solution, and  to demonstrate  prediction  of  behavior  for 
both  perfect  and  imperfect  forms  of  the  arch  by use of the 
present  perturbation  method. 
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The  geometry of the  arch is characterized  by  the  parameter 
ROO /h  and  this  parameter  also  governs in part  the  form of 
buckling, i.e., snap-through  or  bifurcation..  The  dimensions 
chosen  here  yield  a  value of 10.0, the  same  value  employed in 
Reference 14. The  finite  element  representation  consists of 
eight  equally-spaced  arch  elements  whose  formulation is detailed 
in the  Appendix. 

2 

In the  case  of  uniform  radial  loading of intensity Po, for 
the  chosen  geometric  parameter,  bifurcation  occurs  prior  to 
snap-through as illustrated in Figure 5 by  solid  lines  for  the 
classical  solution.  Numerical  results  are  also  shown in  this 
figure.  The  direct  iterative  scheme  discussed in Section I11 
is  used  to  yield  the  solution  points on  the  fundamental  path 
as  given  by  the  circled  points.  Also,  Figure 6 shows  the  calcu- 
lated  stability  determinant at each  load  level.  Lagrangian 
interpolation  gives  the  bifurcation  load Xc = 1.9075, which  is 
within 0.29  of the  exact  value. 

The  arch  buckles  into an asymmetric  shape  and  postbuckling 
load-displacement  behavior is represented  by  a  straight  line 
(Figure 5). The exact  solution  gives -3.851 as the  slope  of 
this  line  while  the  slope  found  by  the  present  perturbation 
method is -3.925, an  error of less  than 2%. Thus,  the  present 
numerical  method  is in  close  agreement  with  all  aspects  of  the 
classical  solution.  Solution  efficiency  considerations  are  dis- 
cussed in the  Appendix. 

In  order  to  examine  the  snap-through  buckling  case  we  add 
the  effect of an applied  moment at mid-span.  Limit  points  cor- 
responding  to  different  magnitudes  of  this  moment  are  determined 
by  using  the  perturbation  method  and  treating  the  moment as an 
imperfection.  The  resulting  load-deflection  curves  are  plotted 
in  Figure 5 and  the  limit  points  vs.  imperfection  are  plotted 
in Figure 7. No alternative  solution  is  presently  available 
for  comparison. 
2. Beam on Nonlinear  Foundation 

The  problem  considered  here  is an axially-loaded  beam on 
a nonlinear  elastic  foundation  (Figure 8). It is of interest 
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to note  that  this  problem  has been employed in the performance 
of  probabilistic  analyses of an infinite  beam  with  random  in- 
itial  Imperfections. c25) Here,  the purpose of  this  example  is 
the  comparison of four  different  methods  for  determination of 
the limit  point:  (a) the present  perturbation  method, (b)  extra- 
polation  from  the  iterative  solution  (Section VI1 of  this paper), 
(c)  Thompson's  "conventional1'  perturbation  method (11) and (d) 
Thompson's  improved  perturbation  method. (9) 

klw - k2w2 - k3w3, where w I s  the  transverse  displacement  and 
kl, k2, and k are  spring  constants. kl simulates  the  linear 
stiffness  [kl; k2 and k3 yield  matrix  coefficients  which  cor- 
respond  to  the [n,] and [n,] geometric  stiffness  matrices, 
respectively. Five  different  combinations of these  constants 
were  employed for  the  subject  numerical  solutions, as follows: 

The  nonlinear  foundatlon  modulus for  the beam  is  given  by 

3 

I 
I1 
I11 
IV 

4 

V 

~~ ~ ~- ~ 

I kl/E1/L ' k2/EI/L5 k3/EI/L6 Pcr/EI/L 2 ' -16 0 16000 11.49 

I - 
~ 

' ~ 160 0 80000 26.09 
' 16 500 0 11.49 

16 500 -1000 11.49 
16 500 1000 11.49 

"" 

In Cases 1-111 either k2  or  k3 is  set  equal  to  zero to 
simulate  cases  where [n,] and En,], respectively,  are  zero. 
Cases IV and V correspond  to the  genera1,nonlinear  finite  ele- 
ment  formulation of a  non-symmetric  structure.  The  above  listing 
also  gives  the  critical  loads as found in Reference 26. 

beam  is  assumed  to  be of the  form  wo = 100 yL sin -, where the 
imperfection  parameter  takes  on  values 0.5, 1, 2, 3 ,  5, 6, 7, 8 
9 and 10. As in the  first  example,  the  finite  element  ldealiza- 
tion consists of eight  equal-length  elements. 

In each  case (I-V) the  initial  deviation of the  complete 
IIX 
L 

In the  presence of imperfection,  the  axially  loaded  beam 
exhibits a snap-through  type of buckling  due  to t'ke continuously 
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weakening  foundation  modulus klw - k2w 
the  foundat ion  modulus  for  Cases 1-111. A t yp ica l   l oad -d i sp lace -  
ment p l o t  i s  shown i n   F i g u r e  10 f o r  Case I V  f o r   v a l u e s  of 

2 - k3W . Figure  9 shows 

W - yL of  0 and 1 . 0 ,  demonst ra t ing  t h e  n a t u r e  of t h i s  ef- 
Omax 100 

f e c t .  

" 

Curves of limit p o i n t s   v s .  the  imperfec t ion   ampl i tude  

mzexbetween the  two  methods  developed i n  t h i s  r e p o r t   ( p e r t u r b a -  
t i o n  and de te rminan t   ex t r apo la t ion )  are  observed,  whi le  t h e  
"conven t iona l "   pe r tu rba t ion  method of  Reference 11 produces 
larger e r r o r  w i th  l a rger  imperfec t ion .  I n  u s i n g  Thompson's 
improved p e r t u r b a t i o n  method (Reference 91, t h e  procedure  in-  
volves  t h e  c a l c u l a t i o n  of a s i n g l e   i m p e r f e c t i o n  parameter on 
t h e  basis o f  a p re se l ec t ed   va lue  o f  limit load .  By t a k i n g  the  
limit p o i n t s  computed i n  the  p r e s e n t   p e r t u r b a t i o n  method as 
g iven   i npu t , t he   co r re spond ing  limit l o a d s  were c a l c u l a t e d  w i t h  
t h e  formulas   in   Reference  9 .  No s i g n i f i c a n t   d i f f e r e n c e s  from 
t h e  p r e s e n t   r e s u l t s  were obta ined  so t h a t   t h e  data g i v e n   i n  
F igure  11 f o r  t h e  "Pe r tu rba t ion"  method can be t a k e n   t o  a p p l y  
t o  both  procedures .  

W are  p l o t t e d   i n   F i g u r e  11 f o r  Cases 1-111. Close agree- 

For the  more g e n e r a l   c a s e s  ( I V  and VI, wi th  three non-zero 
s p r i n g   c o n s t a n t s ,  only t he  r e s u l t s  of t h e  present  methods are 
a v a i l a b l e   s i n c e  no e x p l i c i t   f o r m u l a s   f o r  these c a s e s  are a v a i l -  
able i n   R e f e r e n c e s  9 and 11. The p r e s e n t   r e s u l t s   a r e   g i v e n   i n  
F igure  1 2 .  

I n  us ing  t h e  e x t r a p o l a t i o n  method i n   d e t e r m i n a t i o n   o f  the 
limit p o i n t  as d e p i c t e d   i n   F i g u r e  2 ,  e r r o r   e s t i m a t i o n  i s  i n  
gene ra l   no t   poss ib l e .  The n u m e r i c a l   r e s u l t s  summarized i n  
Table 1, however, show only a 5% maximum discrepancy  between 
the  e x t r a p o l a t e d  limit p o i n t s  and those   ob ta ined  by t h e  p r e s e n t  
per turbat ion  method.  
3 .  Fla t  Plate  Post-Buckling 

The f i n a l  example refers t o  t h e  pos tbuckl ing   behavior  of 
a p e r f e c t l y  f l a t  s imply-supported  rectangular  plate under  uni-  
ax i a l  compression  (Figure 1 3 ) .  The p l a t e  i s  assumed t o  be 
free t o   d i s p l a c e   i n  i t s  own p lane .  This  problem  possesses a 
t r iv i a l   p rebuck l ing   d i sp l acemen t  s ta te  ( f o r   t r a n s v e r s e   d i s p l a c e -  



TABLE 1: BEAM ON NONLINEAR ELASTIC  FOUIJDATION.  VALUES OF NORMALIZED LIMIT 
POINTS (A, /Xc)  VERSUS W 

Omax 

w l0Oy 
L 

= -  
Omax 

" 0  0 - 5  1 2 3 4 5 6 7 8 9 1 0  

a 1  0.679  0.553  0.475  0.417  0.375  0.338  0.308  0.287  0.263  0.248 
I b 1 0.779  0.680 0.555 0.475  0.372  0.336  0.308 0.284 0.263  0.243 

c 1 0.739  0.585  0.342  0.136  -0.213  -0.370  -0.519  -0.660  -0.794  -0.925 

a 1  0.599  0.470  0.384  0.330  0.291  0.256  0.236  0.216  0.198  0.182 
I1 b 1 0.725  0.611  0.477  0.395  0.297  0.264  0.239 0.218 0.200 0.185 

c 1 0.659  0.459 0 . 1 4 2  -0.123  -0.577  -0.782  -0.975  -1.160  -1.330 -1.522 

a 1  0.679  0.571  0.510  0.461  0.423  0.389  0.368  0.343  0.325  0.307 
I11 b 1 0.761  0.680  0.582  0.517  0.431  0.399  0.374  0.351  0.332  0.313 

c 1 0.728  0.614  0.458  0.329  0.134  0.053 -0.024 -0.094 -0.161 -0.224 

a 1  0.665  0.556  0.495  0.403  0.354  0.347  0.325  0.305  0.287 
b 1 0.752  0.669  0.566  0.499 0.410 0.379  0.353  0.329  0.309  0.291 

IV 

a 1  0.695  0.588  0.537  0.455  0.428  0.388  0.384  0.363  0.348 
b 1 0.765 0.690 0.598  0.538  0.460 0.431 0.407  0.387  0.368 0.352 

V 

*SOLUTION  PROCEDURES: 
a :  E x t r a p o l a t i o n  Method ( p r e s e n t  r e p o r t )  
b: P e r t u r b a t i o n  Method ( p r e s e n t  r e p o r t )  
c Method of Ref. 9.  

W 
ru 

I 
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ments),  the  bifurcation  load is  calculated  accurately  by  use 
of linear  theory,  and  because  theoretical  solutions (27,281 
are  available  for  postbuckling  behavior.  It  has  been  chosen 
for  analysis in this  study  for  the  sake  of  comparison  of  the 
perturbation  method  with  the  latter  and  because  it  introduces 
the  finite  element  modeling of a  continuum  structure  (a  plate) 
as  opposed  to  the  finite  element  modeling of discrete  struc- 
tures  (beams,  arches) as  in  the  preceding  examples. 

The  analysis of the  problem  is  performed  with  use of one 
element,  representing a quadrant of the  plate.  The  bifurca- 
tion  point,  calculated  in a linear  stability  analysis,  is found 
to  be 3 6 . 2 9  lb./in.,  compared  to  the classical  result 
36.11 lb./in. (0.5% error). The  postbuckling  path  calculated 
by  the  present  perturbation  method  is  plotted in Figure 13, 
together  with  Coan's  results- ( 2 7 ) .  The two  solutions  are in 
close  agreement. 

(26) of 
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IX. CONCLUDING REMARKS 
Procedures  for  finite  element  analysis  of  geometrically 

nonlinear  problems,  extending  over  the  prebuckling  and  initial 
postbuckling  regimes,  snap-through  buckling,  and  accounting  for 
initial  imperfections,  have  been  presented.  These  procedures 
fall  into  two  general  categories: a perturbation  method  and a 
method of determinant  extrapolation. 

procedure");  the  methods  differ in detailed  application  in  the 
determination of limit  points of imperfection-sensitive  struc- 
tures,  where  the  present  method  is  believed  to  furnish a more 
efficient  route  to  the  calculation of the  limit  point  for  given 
imperfection  data.  The  method of determinant  extrapolation, 
developed  here  only f o r  the  case  of  limit  point  analysis,  is 
a new  departure  for  the  calculation  of  such  points.  The  method 
is  based  upon a sirnple'r algorithm  than  the  perturbation  approach, 
but  is  computationally  more  expensive in application. 

The  perturbation  method  corresponds  closely  to  Thompson's 

Both  approaches,  as  presented  here,  are  quite  limited  in 
their  range of representation  of  load-displacement  behavior. 
By its  nature,  the  perturbation  method  applies  only  in  the 
vicinity of  the  first  branching point.  The  determinant  extrap- 
olation  point  method  does  not  extend  beyond  the  limit  point. 
It should  be  feasible  to  accomplish  this  extension  by  the 
decrementation  of  load  upon  reaching  the  limit  point-  this 
consideration i s  currently  being  explored.  Another  limitation, 
pertinent  only  to  the  perturbation  approach,  relates  to  stabil- 
ity  phenomena  with  multiple  branching  paths  at  the  first  branch- 
ing  point. A classical  example of this  situation  occurs  in  the 
buckling  of an axially-compressed  cylinder  when  the  pre-buckling 
state i s  linear.  Extensions of the  present  perturbation  method 
to  this  condition  are  also in progress. 

A l l  computations of the  fundamental  path  (or  pre-limit- 
point  path in the  case  of  the  determinant  extrapolation  method) 
were  performed  with  use of a direct-iteration  algorithm. As 

the  survey  by  Haisler,  et a1 (I8) has  shown,  this  algorithm  has 
not  been  favored  by  other  analysts  dealing  with  the  subject 



problem. This is apparently  due  to  the  relative  inefficiency 
of  the  method in comparison  with  alternatives,  e.g.,  Newton- 
Raphson  iteration. A higher-order  direct  iterative  scheme  was 
discussed  herein  but  was  not  applied  to  the  problems  analyzed. 
The  accuracy of the  subject  procedures  was  verified  by  solution 
of  a  series  of  problems.  These  problems  are of quite  simple 
form  when  measured  against  practical  design  analysis  situations, 
but  are  nevertheless  relatively  complex  from  the  standpoint of 
numerical  computations  because  of  the  complexity  of  the  phenomena 
represented. Also ,  these  problems  have  been  employed in studies 
of procedures  alternative to the  subject  procedure  and  therefore 
represent  a  useful  basis of comparison. A computer  program  for 
shell  stability  analysis  has  been  developed as part of  the 
present  work;  results  of  this  effort  are  described  in  Reference 
3 0 .  

The  relative  efficiency  and  accuracy  of  the  subject  proce- 
dures  and  various  alternative  approaches  (e.g.,  references 3 ,  
9, 10) remain  open  questions. In view  of  the  inability of  
analysts  to  agree  upon  the  optimum.procedures  in  the  restricted 
area of nonlinear  prebuckling  analysis,  as  disclosed  in  the 
survey  of  Reference 18, it  is  unrealistic t o  expect  the  defini- 
tion of the most appropriate  approach  to  postbuckling  analysis 
at  the  present  time.  These  measures  will  be  obtained  only  after 
significant  experience in practical  application is recorded. 
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APPENDIX 
~- SOLUTION _ _  ... - DETAILS FOR ILLUSTRATIVE EXAMPLES 

1. Clamped -~ .. .. . _---_-i_ Thin  Shal low  Circular  Arch  Under  Uniform Load 
The s ta te  of s t r a i n   i n  t h i s  s t r u c t u r e  (see Figure  A - 1 )  i s  

completely  descr ibed by the  a x i a l   s t r a i n   o f  the n e u t r a l   a x i s ,  
E fo r  whiih t he  s t ra in-d isp lacement   equa t ion  is 6’ 

(A-la) 

and the  curva ture   o f  the  n e u t r a l   a x i s ,  K ,  .. 
K = -- u’66 

R 2  
(A-lb)  

where the  comma d e n o t e s   d i f f e r e n t i a t i o n ,  u and VJ are  t h e  radial  
and a x i a l   d i s p l a c e m e n t s ,   r e s p e c t i v e l y ,  and R i s  t h e   a r c h   r a d i u s .  
With these expressions  and  for   uniform radial  loading  of i n t en -  
s i t y  p ,  the  p o t e n t i a l   e n e r g y  is 

11 =11 
P P1 + *P2 P3 +TI 
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where 6 goes  from  zero t o  one  a long the  i t h  arch segment 
(F igure  A-1). 

Upon s u b s t i t u t i o n  of t he  above   d i sp lacement   func t ions   in to  
the energy  expression (A-2) and  performance of t h e  usual   proce-  
d u r e   o f   i n t e g r a t i o n  and d i f f e r e n t i a t i o n ,  one  obtains  the e q u i l i b -  
r i um  equa t ions   i n  the fol lowing  s tandard  form 

i j  A j + N i j k A j A k  + Ni jk f i  A j A k A R = hPi (A-5) 

J o i n t   l o a d s  Pi are  ca l cu la t ed   on  a "work-equivalent" basis.  

of  t h e   a r c h  are R = 1 0  i n . ,  h = 0.0684 i n . ,  eo = 150, EA = 

2.056 x 10 l b ,  E 1  = 796  l b .  in .2 ,  s o  that  t he  geometric .param- 
e t e r  R e o  /h = 1 0 .  2 

Solu t ion   of  the problem, based on  an  8-element  representa- 
t ion ,   p roceeds  as fo l lows  f a r  t h e  " p e r f e c t "   s t r u c t u r e   s u b j e c t e d  
only   to   un i form rad ia l  load  p.  F i r s t ,  t he  prebuckl ing  p a t h  i s  
determined by use   o f  t he  i t e r a t i v e  method described i n   S e c t i o n  

For t he  spec i f ic   p roblem  under   ana lys i s ,  t h e  p r o p e r t i e s  

6 

111, w i t h  
k2h 

A = P m  
and 2.10. 

i+l *i 
AJ - j  

A; 

s o l u t i o n s   o b t a i n e d  a t  d imens ion le s s   l oad   l eve l s  
= 1, 1 . 5 ,  1.8, 1 . 8 5 ,  1 . 9 0 ,  1.91, 1.95, 2.00 ,  2.05 

The cove rgence   c r i t e r ion  i s  de f ined  as 

- < f o r  a l l  j .  F o u r   d i f f e r e n t   v a l u e s   f o r  r) are used:  

0 . 0 5 ,  0 . 0 1 ,  0 .005  and 0 .001 .  The number o f   i t e r a t i v e   c y c l e s  
needed to   ach ieve   convergence  a t  each   l oad   l eve l   fo r   each  r) 

a r e   p l o t t e d   i n   F i g .  A-2. It i s  o f   i n t e r e s t   t o   n o t e  tha t  nea r  
t he  b i f u r c a t i o n   p o i n t  ( A  = 1 . 9 0 9 8 )  t h e  number o f   c y c l e s   f o r  
convergence  increases  s h a r p l y .  However, monotonic  convergence 
i s  observed   in  all load  levels   below o r  above t h e  b i f u r c a t i o n  
p o i n t .  

Based  on t h e  converged   so lu t ion   for   d i sp lacements ,  t h e  
d e t e r m i n a n t   o f   t h e   t o t a l   s t i f f n e s s   n a t r i x   ( E q u a t i o n  6 )  i s  
c a l c u l a t e d ,  w i t h  r e s u l t s  as shown i n   F i g u r e  6 .  Then, u s ing  
Equations 7 and 8 ,   t h e   b i f u r c a t i o n   p o i n t ,  ( X c ) ,  d isplacements  
(Ti) and t h e i r  d e r i v a t i v e s  (zi, A;) a t  b i f u r c a t i o n   p o i n t   a r e  

- 



e a s i l y   c a l c u l a t e d .  The va lue   o f  AC i s  found t o  be 1.9075. 
Next, the  r ep resen ta t ion   o f   pos t -buck l ing   behav io r  i s  estab- 
l i shed .  After o b t a i n i n g  X c ,  Ai ,  A i  and x;, the  va lues  of t h e  
c o e f f i c i e n t  D - i s  can be c a l c u l a t e d   e a s i l y   u s i n g   E q u a t i o n   ( 2 3 ) .  
It i s  found t h a t  A t h e  b i f u r c a t i o n  mode, i s  anti-symmetric 
about the  mid-span  and Dl = D3 = D6 = 0. The path parameter 
E is chosen   t o  be the  c e n t r a l   s l o p e  Asp and  due t o  the a n t i -  
symmetry o f  A t h e  c e n t r a l   d e f l e c t i o n  Acl = 0.  The load- 
c e n t r a l   d e f l e c t i o n   r e l a t i o n  i s  r ep resen ted  by 

- - 

il ' 

il' 

z 
Ap = (A:) Ac2 

C 

X-Xc  = - (A:) 
c) 

After e l imina t ion   o f  (A:) , there i s  obta ined  
L 

n 

A' = -(A-X )(- c u2  
C 5 7  Ac2) 

From t h i s  t h e  s lope   o f  the  A: -X r e l a t i o n s h i p  i s  obta ined  as 

Since  the  t o t a l   d e f l e c t i o n  Ac = A c  + A:, 
- 

d A C  - dxc d(AE) 
a" dX +"----= - .436-4.361 = -3.925 ( A - 1 0 )  dX 

To s imula te   an   imperfec t   s t ruc ture ,   an   asymmetr ic  imper- 
f e c t i o n  i s  i n t r o d u c e d   i n  t he  form  of a c o u p l e   a c t i n g  a t  mid- 
span  (Figure 1 4 ) .  The a d d i t i o n a l  term i n  t h e  equi l ibr ium  equa-  
t i o n  (A-5) i s  then  XyIi. The va lues   o f  Iils are zero  except  
f o r  I = 1. Ca lcu la t ion   t hen   p roceeds   a long  the l i n e   o f  
Sec t ion  V I .  I n   a d d i t i o n   t o  t he  coe f f i c i en t s   ca l cu la t ed   above  
f o r  t h e  p e r f e c t   s t r u c t u r e  we f i n d  D = 0 and, A c 2 2  = 0 i n  t h e  

c e n t r a l   d e f l e c t i o n .  The l o a d - c e n t r a l   d e f l e c t i o n   r e l a t i o n  i s  

19 

51  

then  - 2 
% = Ac + (A:) c2 ( A - 1 1 )  

(A-12)  



Curves  for y = 0.1, 0.5, 1.0 and 1.5 ar plotted in Fig.  
5. The limit  points  non-dimensionalized to $ for 0.1 5 y 5 1.5 
are plotted  in Fig. 7. A 

2. Beam on Nonlinear Foundation 
It i s  assumed  that  the  beam  sustains  only  flexural  de- 

formation. Thus, it  can  be shown that the  potential  energy 
in the  presence  of  initial  deviations  wo  and with a  nonlinear ,-. 
foundation  modulus  klw - k2wC - k3w 5 is 

with 5 = and with wo similarly  represented as yLfeJ {Ao3 , 
the  total  potential  energy  in  matrix  form can be  written  as 

where,  for  each  element 
[kl = E1 {f:)  ,f:,dx 

R 
[nl = f if;) f' dx 

[Zl = fa Cf,) Lfe-I dx 
R L e J  

(A-16) 



The  potential  energy of the  full  length of the  beam  is  ob- 
tained  by  summing  the  element  potential  energies,  resulting in 

From ( A - 1 7 )  the  equilibrium  equation  is  obtained 

(CKl+klczl- CNI){A}-k2CNl(A)l{A}-k3[N2(A2)]{A} = yA[N]{A,} (A-18) 

which  can  be  rewritten as (denoting X' the  eigenvalue  of 

= yAIN1{Ao) (A-19 1 

Since  in  this  case  the  pre-buckling  path is trivial,  one  can 
proceed  to  post-buckling  and  limit  point  analysis  immediately 
and  identify {A} to  AYIs. A comparison  with  Equation (14) 
reveals  that 

A A A  = - k ( N ( A ) )  A a n d I i = N  A 2 
NijkR j k R 3 2  ij J ij OJ 

Thus,  the  previously  derived  formulas  can  be  applied 
directly  to  yield  all  required  information. 

Computations  are  performed  for  combinations of the  param- 
eters kl, k2, k 3 :  

k2 = 0, kl # 0 ,  k 3  f 0 :  

The  load,  structure  and  behavior  are  symmetric  in  the  pre-buckled 
state.  With  the  term TLA-,[Nl(A){A} = 0 it i s  found  from  Equa- 
tion 23 that 

k2 



From  computation, D3 = D31 = 0. The  path  parameter E is  iden- 
tified  to  the  central  deflection Ac. The  post-buckling  path 
therefore  becomes n 

X -X = _1 A: C u 

D2 
(A-21) 

The load-displacement  relation  for  the  corresponding  imperfect 
beam is 

(A-22) 

The  limit  point I s  calculated  using  the  following  simple  rela- 
tion,  which  is  obtained  by  taking - - - 0 and  using  equation 
(A-22 ) dAC 

2 D2 ( P - X  1 3/2 
y = - -  

3v-T 

k3 = 0, asymmetric  case: 

In  this  case  the  structure or loading  are  not  symmetric  and 
the  fourth  order  term  in  total  energy  expression  is  zero. 
Since D7 is zero in  this  case,  the  term  associated  with E 

is  also  put  to  zero  to  give the same  degreaz  of  accuracy. Hence, 
the  post-buckling  path  takes  the  even  simpler  form: 

2 

X--X = AcD1/D2  (A-24) 

where 

The  load-displacement  relation  for t h e  imperfect beam is 



XC-h 
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The limit point is related to the imperfection 

(XC-XI2 

D2 D2 

Y = -  m a . 1  4- 

(A-26)  

parameter y 

k2 # 0,  k # 0, asymmetric  case: 3 

This  is  the  general  case  modeling  the  nonlinear  geometric 
matrices N1 and N 2 .  Only D4 and D6 equal  zero  in  this  case. 
From  computation D 3 y  D31 and D are  negligible. 5 1  

2 

+ - (D5 + D7) AC 

D2 
(A-28)  Then 

The  limit  points  can  be  calculated  from 

-D~(x~-A)A~+D~A:+(D~+D~)A~ 3 
Y =  -. (A-30) 

3 -  - Flat  Plate  Postbuckling 
The  rectangular  plate  element  employed  for  these  computa- 

tions  was  originally  formulated  by  Bogner,  et a1 (Reference 31) 
for  large  displacement’  analysis of circular  cylinders  and  has 
more  recently  been  extended (30) to  deal  with  more  general 
shapes  of  shells.  The  formulation  is  based  upon  bicubic  inter- 
polation  functions  for  the  three  displacement  components. In 
the  case of the  uniaxially  compressed  flat  plate  without  in- 
itial  imperfections  the  resulting  system  stiffness  matrix  is 
of the  form 
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where the  s u b s c r i p t s  b and m des igna te   bending  and membrane 
a c t i o n   r e s p e c t i v e l y .  For pre-buckl ing   and   b i furca t ion  t h e  dis- 
placements {Ab] are zero.   Thus,  t h e  s o l u t i o n  for pre-buckling 
displacements  i s  

€Kml  = X CKm]-' € P m l  ( A - 3 3  1 

and  b i furca t ion  i s  determined from the cond i t ion  

Upon c a l c u l a t i o n   o f  X c  and t h e  a s soc ia t ed   e igenvec to r  the  pos t -  
buck l ing   ana lys i s   p roceeds   v i a   eva lua t ion   o f  t he  c o e f f i c i e n t s  
Di of   Equat ion 23 .  It i s  found t h a t  only D2, D5 and D7 are 
nonzero,   and  for t h e  c e n t r a l  l a t e ra l  displacement   of  t h e  p l a t e  
(A:) as t h e  re ference   d i sp lacement ,  t he  normalized  form of  
Equation 22  can be  w r i t t e n  as 

The post-buckl ing  response,  i n  terms of A versu3 A c 3 i S  

c a l c u l a t e d  from t h i s  equation  and i s  p l o t t e d   i n   F i g u r e  1 4 .  

P 
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a. B i f u r c a t i o n  w i t h  Ascending  Post-buckling Pa th  
x + 

0 
b. B i f u r c a t i o n  w i t h  Descending  Post-buckling Pa th  

x 

c .  L i m i t  Point-No B i f u r c a t i o n  

FIGURE 1. FORMS OF INSTABILITY UNDER STUDY 
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x B i f u r c a t i o n  

D e t  

x ,  L i m i t  

a. L o a d - D e f l e c t i o n   P l o t s  

Detl f, 
Det2t\ For In t e rpo la t ion  

see Eq. ( 7 )  

D e t  

Detl 

Det 

Det3 

Det, 

For E x t r a p o l a t i o n  
see Eq. (3b) 

""" 

x x 
'p 

b. Load-Determinant  Response 

FIGURE 2. DETERMINATION OF BIFURCATION AND LIMIT POINTS 
BY INTERPOLATION AND EXTRAPOLATION O F  LOAD- 
DETERMINANT RESPONSE. 
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FIGURE 3. SLIDING COORDINATE SYSTEM 
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FIGURE 6. ARCH PROBLEM. INTERPOLATION FOR BIFURCATION POINT 
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FIQBRE 7. ARCH-PROBLEM. LIMIT  LOAD VERSUS IMPERFECTION 
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F I G U R E  8 .  BEAM  ON  NONLINEAR  ELASTIC  FOUNDATION 
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Foundation Modulus 
klw - k2w2 - k w 3 3 

( f o r c e / l e n g t h )  

FIGURE 9 .  ELASTIC FOUNDATION PROPERTIES 



Points 

FIGURE 10. POST-BUCKLING PATH AND LOAD-DISPLACEMENT RELATIONSHIP. 
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FIGURE 12 .  CASES I V ,  V.  LIMIT LOAD AS A FUNCTION OF w 
Omax 
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