338 research outputs found

    Designing for the experiential body

    Full text link
    The goal of this panel is to reflect on the past and discuss the present and future of designing for an experiencing body in HCI. The motivation is to discuss the full range of rich body/movement-based experiences and how the CHI community can embrace and extend these perspectives on designing for the body. The panelists and audience will be asked to share their perspectives on what has most influenced thought in designing for the body, how new sensing technologies are crafting the HCI perspective, and where they see this line of research and design heading in the next ten years

    Multilevel Monte Carlo and control-variate simulation of Coulomb collisions

    Get PDF
    Abstract. The multilevel Monte Carlo and the control-variate method are reviewed for simulation of Coulomb collisions. The test case considered is fast-ion relaxation from ion-ion and electron-ion collisions against a Maxwellian background. A simplified energy scattering model is derived and related to the Cox-Ingersoll-Ross model for which, an exact time dependent solution can be obtained. The exact model is used as a control-variate for the estimation of the mean energy

    Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin

    Get PDF
    The opportunistic human pathogen Staphylococcus epidermidis is the major cause of nosocomial biomaterial infections. S. epidermidis has the ability to attach to indwelling materials coated with extracellular matrix proteins such as fibrinogen, fibronectin, vitronectin, and collagen. To identify the proteins necessary for S. epidermidis attachment to collagen, we screened an expression library using digoxigenin-labeled collagen as well as two monoclonal antibodies generated against the Staphylococcus aureus collagen-adhesin, Cna, as probes. These monoclonal antibodies recognize collagen binding epitopes on the surface of S. aureus and S. epidermidis cells. Using this approach, we identified GehD, the extracellular lipase originally found in S. epidermidis 9, as a collagen-binding protein. Despite the monoclonal antibody cross-reactivity, the GehD amino acid sequence and predicted structure are radically different from those of Cna. The mature GehD circular dichroism spectra differs from that of Cna but strongly resembles that of a mammalian cell-surface collagen binding receptor, known as the alpha(1) integrin I domain, suggesting that they have similar secondary structures. The GehD protein is translated as a preproenzyme, secreted, and post-translationally processed into mature lipase. GehD does not have the conserved LPXTG C-terminal motif present in cell wall-anchored proteins, but it can be detected in lysostaphin cell wall extracts. A recombinant version of mature GehD binds to collagens type I, II, and IV adsorbed onto microtiter plates in a dose-dependent saturable manner. Recombinant, mature GehD protein and anti-GehD antibodies can inhibit the attachment of S. epidermidis to immobilized collagen. These results provide evidence that GehD may be a bi-functional molecule, acting not only as a lipase but also as a cell surface-associated collagen adhesin

    A trophic bottleneck?: The ecological role of trout‐perch P ercopsis omiscomaycus in S aginaw B ay, L ake H uron

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97230/1/jai12023.pd

    Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context

    Get PDF
    Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media

    Modelling India’s coal production with a negatively skewed curve-fitting model

    Get PDF
    India’s coal demand is forecast to increase at a rapid pace in the future due to the country’s economic and population growth. Analyzing the scope for future production of India’s domestic coal resources, therefore, plays a vital role in the country’s development of sound energy policies. This paper presents a quantitative scenario analysis of India’s potential future coal production by using a negatively skewed curve-fitting model and a range of estimates of the country’s ultimately recoverable resources (URR) of coal. The results show that the resource base is sufficient for India’s coal production to keep increasing over the next few decades, to reach between 2400 and 3200 Mt/y at 2050, depending on the assumed value of URR. A further analysis shows that the high end of this range, which corresponds to our ‘GSI’ scenario, can be considered as the probable upper-bound to India’s domestic coal production. Comparison of production based on the ‘GSI’ scenario with India’s predicted demand shows that the domestic production of coal will be insufficient to meet the country’s rising coal demand, with the gap between demand and production increasing from its current value of about 268 Mt/y to reach 300 Mt/y in 2035, and 700 Mt/y by 2050. This increasing gap will be challenging for the energy security of India
    corecore