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1. Introduction

Simulating particles evolved in time by a stochastic differential equation (SDE) in a

Lagrangian frame of reference is a common method for solving diffusion equations in high

dimensions. What characterize stochastic differential equations in contrast to ordinary

differential equations is that they have a random term called the Wiener process or

Brownian motion. The computational work of particle simulations scale linearly with

the number of dimensions and thus do not suffer from the exponential dependence of the

dimensionality that the finite difference and the finite element method have. However,

due to the finite number of particles the simulation result contains statistical noise. The

standard deviation of the statistical uncertainty scale as,

αN−β, (1)

where N is the number of particles, markers or samples. Numerical techniques for

improving the statistical convergence can therefore be separated into two categories:

variance reduction techniques that minimize α and quasi-Monte Carlo techniques that

enhance β. Two common methods that minimize α are the importance-sampling and

the control-variate method [1]. The control-variate method reduces α by solving an

auxiliary model, which is correlated with the original model.

For the standard Monte Carlo method the value of β is 1/2. Improving the order of

convergence β is slightly more difficult than reducing α. This is achieved by replacing the

pseudo-random numbers with so called quasi-random numbers that are more uniformly

distributed over the integration interval. It can be shown [2] that the asymptotic

convergence of the statistical error with quasi-random numbers scale as O(log(N)sN−1)

where s is the number of physical dimensions times the number of time steps. In low

dimensions the logarithm term is often ignored. However, when s ≫ 1 become large this

term will blow up. Recent work [3] on quasi-Monte Carlo simulation of the pitch and

energy scattering processes show that the convergence is close to O(N−1) for modest

number of time steps.

When solving a stochastic differential equation with numerical methods an error

from the time discretization is obtained in adition to the statistical error. To minimize

the total error a new technique called the multilevel Monte Carlo method based on

multigrid ideas was introduced in [4].

The purpose of this paper is to investigate the performance of the control-variate

and the multilevel Monte Carlo method for simulation of Coulomb collisions against a

local Maxwellian in one-dimension. In section 2, we briefly introduce the link between

the stochastic differential equation and the Fokker-Plank equation and discuss the

numerical error obtained when simulating particle ensembles. In section 3, we derive

a simplified energy scattering model from the Chandrasekhar [5] coefficients, which is

used as a control-variate. Section 4 introduces the multilevel Monte Carlo method and

simulation results are reported. The results are summarized in section 5.
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2. Approximation of stochastic differential equations

We start of with the definition of the autonomous Itô stochastic differential equation

(SDE) for a stochastic variable V (t) ∈ R:

dV (t) = A(V (t))dt+ σ(V (t))dW (t), t0 ≤ t ≤ T (2)

with V (t0) = v. Here dW (t) = W (t + dt) − W (t) ∈ N(0, dt) and W (t) is the Wiener

process also known as Brownian motion, which is a normally distributed random process.

The Wiener process is the time integral of the Langevin force. Many realizations of

the SDE give an ensemble of particles with a distribution function described by the

corresponding Fokker-Planck equation,

∂f

∂t
(v, t) = −

∂

∂v
A(v)f +

1

2

∂2

∂v2
σ2(v)f, (3)

where A and σ2/2 are the drift and diffusion coefficient respectively. Analytical solution

of SDEs are rare and depend strongly on the structure of the coefficients. Therefore it

is common to integrate SDEs with numerical schemes. The simplest scheme available

is the Euler-Maruyama scheme, which read:

Ṽ i+1 = Ṽ i + A(Ṽ i)∆t + σ(Ṽ i)∆t1/2Z i, (4)

where Z i is a normally distributed random number with zero mean and unit variance.

Here i is the time increment index on the grid {t0, . . . , t0 + i∆t, . . . , T}. Two common

measures of the error are the strong and the weak errors [6]. The strong error measures

convergence of the paths of individual samples w.r.t. the time step, while the weak error

is defined as

|ǫ∆t| = |E[g(V (T ))]− E[g(Ṽ (T ))]| ≤ Kq∆tq, (5)

and measures the convergence in distribution (moments). Given a numerical solution

of the SDE (2), assume that the goal is to estimate the expected value, E[g(Ṽ (T ))].

The function g(·) measures an unspecified property of the distribution function. This

function can be any type of measurement on the distribution function, e.g. a mean

value g(x) = x or a indicator function, used for creating histograms. The concept of the

Monte Carlo method is to approximate the expected value with the sample mean from

N independent simulations,

E[g(Ṽ (T ))] =

∫

g(ṽ)f(ṽ)dṽ ≈
1

N

N
∑

l=1

g(Ṽ (ωl)(T )), (6)

where Ṽ (ωl) are realizations (particles) at the final time T . The statistical error,

ǫstat = E[g(Ṽ (T ))]−
1

N

N
∑

l=1

g(Ṽ (ωl)(T )), (7)
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of this estimator is a stochastic variable with zero mean and variance,

Var[ǫstat] = Var[g(Ṽ (T ))]N−1. (8)

This gives the well known N−1/2 behavior of the confidence interval. Methods that

reduce the statistical error are called variance reduction methods. The total error is the

sum of the statistical error and the bias from the numerical time integration,

ǫtot = E[g(V (T ))]−
1

N

N
∑

l=1

g(Ṽ (ωl)(T )) = ǫ∆t + ǫstat, (9)

and has a mean square error,

E[ǫ2tot] = Var[ǫstat] + ǫ2∆t ≈ Var[g(Ṽ (T ))]N−1 +Kq∆t2q. (10)

Note that this is a weak error since it measures the difference of the mean and not the

mean of the difference. In the next section we will present methods that minimize the

statistical error.

3. The control-variate method

One of the more well known variance reduction technique available is the control-variate

method. To illustrate this method we here consider the problem of estimating the

E[g(V )] for a function g(·) and a stochastic process V (t) evolving according to (2).

Next construct an new stochastic differential equation with coefficients A0 ≈ A and

σ0 ≈ σ for a process V0, called the control variate, such that m = E[g(V0)] is known.

Thus V and V0 are described by the SDEs,

dV (t) = A(V (t))dt+ σ(V (t))dW (t) (11)

dV0(t) = A0(V0(t))dt+ σ0(V0(t))dW (t). (12)

Finally we construct a new process,

Z = g(V )− c(g(V0)−m), (13)

for a scalar c ∈ [0, 1] determined below. Comparing Z with g(V ) we note that they

have the same mean, E[Z] = E[g(V )], thus our problem could be solved by simulating

Z. The variance of Z and g(V ) are however different,

Var[Z] = Var[g(V )] + c2Var[g(V0)]− 2cCov[g(V ), g(V0)]. (14)

Minimizing this variance with respect to c yields c = Cov[g(V ), g(V0)]/Var[g(V0)].

Note that when g(V ) and g(V0) are strongly correlated, then Var[Z] ≪ Var[g(V )].

According to (7) these variances describe the numerical error obtained in Monte Carlo

evaluations of E[Z] and E[g(V )]. Thus, for strong correlation between g(V ) and g(V0)

the evaluation of E[Z] has significantly smaller statistical error than an evaluation of

E[g(V )]. Replacing V0 by V give c = 1 and the variance of Z is zero. In the following

section we will derive a simplified model, which can work as a control variable for

simulation of the energy scattering process.
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Figure 1. Particle paths of the exact model (15) in red and the approximate model

(17) in black.

3.1. A control-variate model for the energy scattering operator

Modeling energy scattering against a Maxwellian background is achieved with the

following SDE,

dE =
(

α(2mE)1/2 +mβ/2
)

dt+ (2mEβ)1/2 dW, (15)

where α, β are the Coulomb coefficients derived by Chandrasekhar [5]. Exact expressions

for the coefficients are found in [7]. Neglecting the ion-ion collisions we can find

approximate expressions for α and β valid in the region max(Vα, Vβ) ≪ v ≪ veth:

α ≈ −
v

ts
, β ≈

2kTe

mts
, (16)

where ts is the slowing down time and Vα,β are given in [7]. Inserting these expressions

in (15) gives,

dEcv =
2

ts

(

kTe

2
− Ecv

)

dt+ 2

(

kTe

ts
Ecv

)1/2

dW. (17)

This SDE is the Cox-Ingersoll-Ross model (CIR) [8] and describes a squared Ornstein-

Uhlenbeck process [9] with the mean value reverting to kTe/2 for large times. The CIR

model has a time dependent analytical solution of the distribution function [10] and can

be simulated exactly [1, p.124]. The expected value of (17) satisfies,

m(t) =
kTe

2
+

(

m0 −
kTe

2

)

exp

(

−
2t

ts

)

, (18)

where m(t) = E[Ecv]. We next analyze the performance of (15) and (17) for the

estimation of the mean energy using Z = E − c(Ecv − m(t)). The simulated plasma
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consists of protons and electrons, both with densities 3 × 1019 m−3 at temperature 4

[keV]. The initial energy is 1 [MeV]. The fast protons above and below mV 2
α /2 = 60

[keV] collide primarily with the electrons and with the thermal protons respectively.

The simulation was run to 0.5 and to 1.5 slowing down times (ts). The number of

time steps were 2048 and 3072, respectively. Equation (15) was discretized with the

Euler-Maruyama scheme and (17) was discretized with,

Ẽi+1
cv =

kTe

2
+ e−

2

ts
∆t

(

Ẽi
cv −

kTe

2
+ 2

(

kTe

ts
Ẽi

cv∆t

)1/2

Z i

)

, (19)

where Z i ∼ N(0, 1) [11, 4]. Figure 1 illustrates the thermalization of two particles, one

from the approximate model in black (17) and the other simulated with the exact model

in red (15). The figure shows that the paths are correlated and are slowly separating as

they go down in energy. This is also seen in figures 2(a), 2(b) where the approximate

model is plotted against the exact model. At 0.5ts the correlation between E and Ecv is

strong, which means that the realizations of E−Ecv is small and hence the distribution

of Z becomes very narrow as illustrated in figures 2(c), 2(d). Continuing the simulation

to 1.5ts the correlation is now weak at energies around and below 60 [keV], which is

were the ion-ion collisions start to dominate in the exact model. The weak correlation

give a distribution of Z with a larger variance as seen in figure 2(d).

Calculations of the batch mean energy with 90% confidence interval are given in

table 1. For a fixed statistical error, the variance reduction in (8) give a smaller N and

a smaller value of the computational complexity, which is proportional to O(N/∆t).

Therefore we can measure the speedup, of a simulation, as the ratio of the batch variance

of the control-variate estimator and the standard Monte Carlo estimator. The speedup

is about 4000 at 0.5ts, which means that we can obtain the same confidence interval

with 4000 times fewer particles than needed by the standard Monte Carlo. A speedup

of 6 is achieved for 1.5ts.

Table 1. The batch averaged correlation for T = 0.5ts is 99.98% and the batch

averaged speedup is 4159. The correlation at T = 1.5ts is 91.15% and the speedup is

6.

T = 0.5ts Batch mean ( 90% confidence ) Batch variance

Control-variate 378.17± 0.016 0.00076

Standard MC 378.64± 0.545 0.88

T = 1.5ts
Control-variate 18.064± 0.178 0.095

Standard MC 18.091± 0.367 0.403

4. The Multilevel Monte Carlo method

The multilevel Monte Carlo method is closely related to the control variate method,

but there are a number of differences. Perhaps the most fundamental difference is that
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Figure 2. Scatter plot of (E,Ecv) (top panel) for T = 0.5ts (left column) and

T = 1.5ts (right column). Bottom panel show the distributions of Z.

it considers not only the statistical error, but the total error described in (10). The

auxiliary model in the multilevel method is not a simplified model of the stochastic

differential equation, as in the control-variate method, but an approximate Monte Carlo

solution of the original equation evaluated on a sparse time grid. Thus, the auxiliary

model will give a large time discretization error. However, since it has been evaluated

on a sparse time grid (a few long time steps) it is relatively cheap to evaluate this

solution with many particles and thus with a small statistical error. The next step in

the multilevel method is a corrector step and involves estimating the time discretization

error on the sparse time grid. This corresponds to the term E[g(V1) − g(V0)] in the

control-variate method and is evaluated by letting V0 be a solution on a sparse time grid

and V1 be a solution on a refined grid. Note that V0 and V1 have to be calculated from

the same realization of the Wiener process W (t). This is illustrated in figure 3; the two

processes V0 and V1 in 3(a) are simulated using the two time discretizations from the

same realization of the Wiener process, shown in 3(b). Since V0 and V1 are strongly

correlated the variance Var[g(V1)−g(V0)] is small and relatively few particles are needed
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to evaluate the correction E[g(V1) − g(V0)]. The corrector step described above can be
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(a) Sample trajectories for V0 (black) and V1 (red)
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(b) Underlying Brownian motion sampled on coarse

(black) and fine (red) time grids

Figure 3. Illustration of the strong convergence property for coarse (black) and fine

(red) time discretization levels.

applied several times to generate a sequence of solutions with more and more refined

time grids [4], forming a telescoping sum,

E[g(VL)] = E[g(V0)] + E[g(V1)− g(V0)] + E[g(V2)− g(V1)] + . . .

= E[g(V0)] +

L
∑

l

E[g(Vl)− g(Vl−1)] . (20)

Here each level l represents a time grid (the higher the value of l the finer the grid) and

each term in the sum is a corrector step. In order for the different corrector steps not

to correlate, each corrector step has to be evaluated with a different realization of the

Wiener process. However, within one corrector step Vl and Vl−1 has to be evaluated

with two time discretizations from the same realization of the Wiener process. Note

that for each corrector step the time steps gets smaller and thus the processes Vl and

Vl−1 will be more and more correlated, as illustrated in figure 4. Thus, the variance of

Var[g(Vl) − g(Vl−1)] will decrease and hence the fewer and fewer particles are needed

to evaluate the corrector. An important part of designing a multilevel algorithm is

therefore to optimize how the sequence of time grids and the number of particles to use

in each corrector step are selected. For further reading on the subject see [4] and [12].

Thermalization of fast ions

We have tested the multilevel Monte Carlo method, the randomized quasi-Monte Carlo

method described in [3] and the standard Monte Carlo method on the one-dimensional

energy scattering operator (15). The tests was conducted in Matlab
TM

version R2012a

on a twelve core Intel computer @ 2.67 GHz with 62 gigabyte of RAM. In the multilevel
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Figure 4. Distributions of the coarse fine estimator El − El−1.

Monte Carlo method we used 26 time steps on the coarsest level ( not a single time

step ∆t = T as in [4] ). The simulation parameters are the same as for the control-

variate case, but with initial energy at 100 [keV] and T = ts [s]. The time grid was

refined by a factor of 4 on each level and the measured sample averages was run 10

times. Two moments were considered, the mean energy and the energy squared. The

root mean square error is measured against a Monte Carlo simulation with N = 107

and ∆t = 2−12ts. The results are given in table 2. The multilevel Monte Carlo method

is about 18 times faster than the standard Monte Carlo and is about 21 times faster

when combined with the control-variate estimator. Note that the simulation time of

the randomized quasi-Monte Carlo method is misleading, since we have excluded the

wall-clock time to generate the quasi-random numbers, which was quite long compared

to the other methods. The reason for this is because the quasi-random generator has

not been optimized and cannot compete with the pseudo-random generator in Matlab.

5. Conclusions

We have derived an approximate analytical energy relaxation model and used it as

a control-variate for studying fast ion relaxation. The derived model is the Cox-

Ingersoll-Ross model from finance, which has a known analytical solution of the time

evolved distribution function. The performance of the derived model is very good when

electron collisions dominate, but breaks down when ion-ion collisions are important.

The multilevel Monte Carlo method was tested on the same model and compared with

the randomized quasi-Monte Carlo method and the standard Monte Carlo method.

The multilevel Monte Carlo method is up to 21 times faster, measured in wall-clock

simulation time, than the standard Monte Carlo method for similar mean error. The

method requires fewer particles to be simulated than the randomized quasi-Monte Carlo
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Table 2. Simulation results from the multilevel Monte Carlo method (MLMC), the

randomized quasi-Monte Carlo method (RQMC) and the standard Monte Carlo (MC).

Reference values obtained from a standard Monte Carlo simulation with 107 particles

and ∆t = 2−12ts are 6.0254 [keV] for E[E] and 60.4624 [(keV)2] for E[E2]. Note that

the time for generating the quasi-random numbers has been excluded for RQMC.

Type E[E] [keV] r.m.s. wall-clock time [s] N

MC 6.054 0.0285 280 106

MLMC 6.032 0.0202 15 ≈ 7× 105

MLMC+CV 6.038 0.0218 13 ≈ 7× 105

RQMC 6.051 0.0278 19 105

Type E[E2] [(keV)2]

MC 60.872 0.419 280 106

MLMC 60.585 0.384 17 ≈ 105

RQMC 60.873 0.432 15 105

method.
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