347 research outputs found

    Architectural and Functional Similarities between Trimeric ATP-Gated P2X Receptors and Acid-Sensing Ion Channels

    Get PDF
    ATP-gated P2X receptors and acid-sensing ion channels are two distinct ligand-gated ion channels that assemble into trimers. They are involved in many important physiological functions such as pain sensation and are recognized as important therapeutic targets. They have unrelated primary structures and respond to different ligands (ATP and protons) and are thus considered as two different ion channels. As a consequence, comparisons of the biophysical properties and underlying mechanisms have only been rarely made between these two channels. However, the recent determination of their molecular structures by X-ray crystallography has revealed unexpected parallels in the architecture of the two pores, providing a basis for possible functional analogies. In this review, we analyze the structural and functional similarities that are shared by these trimeric ion channels, and we outline key unanswered questions that, if addressed experimentally, may help us to elucidate how two unrelated ion channels have adopted a similar fold of the pore

    Oceanic Sharks Clean at Coastal Seamount

    Get PDF
    Interactions between pelagic thresher sharks (Alopias pelagicus) and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by “circular-stance-swimming,” presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays

    Emergent electric field control of phase transformation in oxide superlattices.

    Get PDF
    Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality

    Combined direct-sun ultraviolet and infrared spectroscopies at Popocatépetl volcano (Mexico)

    Get PDF
    Volcanic plume composition is strongly influenced by both changes in magmatic systems and plume-atmosphere interactions. Understanding the degassing mechanisms controlling the type of volcanic activity implies deciphering the contributions of magmatic gases reaching the surface and their posterior chemical transformations in contact with the atmosphere. Remote sensing techniques based on direct solar absorption spectroscopy provide valuable information about most of the emitted magmatic gases but also on gas species formed and converted within the plumes. In this study, we explore the procedures, performances and benefits of combining two direct solar absorption techniques, high resolution Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS), to observe the composition changes in the Popocatépetl’s plume with high temporal resolution. The SO2 vertical columns obtained from three instruments (DOAS, high resolution FTIR and Pandora) were found similar (median difference <12%) after their intercalibration. We combined them to determine with high temporal resolution the different hydrogen halide and halogen species to sulfur ratios (HF/SO2_{2}, BrO/SO2_{2}, HCl/SO2_{2}, SiF4_{4}/SO2_{2}, detection limit of HBr/SO2_{2}) and HCl/BrO in the Popocatépetl’s plume over a 2.5-years period (2017 to mid-2019). BrO/SO2_{2}, BrO/HCl, and HCl/SO2_{2} ratios were found in the range of (0.63 ± 0.06 to 1.14 ± 0.20) × 104^{–4}, (2.6 ± 0.5 to 6.9 ± 2.6) × 104^{–4}, and 0.08 ± 0.01 to 0.21 ± 0.01 respectively, while the SiF4/SO2_{2} and HF/SO2_{2} ratios were found fairly constant at (1.56 ± 0.25) × 103^{–3} and 0.049 ± 0.001. We especially focused on the full growth/destruction cycle of the most voluminous lava dome of the period that took place between February and April 2019. A decrease of the HCl/SO2_{2} ratio was observed with the decrease of the extrusive activity. Furthermore, the short-term variability of BrO/SO2_{2} is measured for the first time at Popocatépetl volcano together with HCl/SO2_{2}, revealing different behaviors with respect to the volcanic activity. More generally, providing such temporally resolved and near-real-time time series of both primary and secondary volcanic gaseous species is critical for the management of volcanic emergencies, as well as for the understanding of the volcanic degassing processes and their impact on the atmospheric chemistry

    Ionic Tuning of Cobaltites at the Nanoscale

    Full text link
    Control of materials through custom design of ionic distributions represents a powerful new approach to develop future technologies ranging from spintronic logic and memory devices to energy storage. Perovskites have shown particular promise for ionic devices due to their high ion mobility and sensitivity to chemical stoichiometry. In this work, we demonstrate a solid-state approach to control of ionic distributions in (La,Sr)CoO3_{3} thin films. Depositing a Gd capping layer on the perovskite film, oxygen is controllably extracted from the structure, up-to 0.5 O/u.c. throughout the entire 36 nm thickness. Commensurate with the oxygen extraction, the Co valence state and saturation magnetization show a smooth continuous variation. In contrast, magnetoresistance measurements show no-change in the magnetic anisotropy and a rapid increase in the resistivity over the same range of oxygen stoichiometry. These results suggest significant phase separation, with metallic ferromagnetic regions and oxygen-deficient, insulating, non-ferromagnetic regions, forming percolated networks. Indeed, X-ray diffraction identifies oxygen-vacancy ordering, including transformation to a brownmillerite crystal structure. The unexpected transformation to the brownmillerite phase at ambient temperature is further confirmed by high-resolution scanning transmission electron microscopy which shows significant structural - and correspondingly chemical - phase separation. This work demonstrates room-temperature ionic control of magnetism, electrical resistivity, and crystalline structure in a 36 nm thick film, presenting new opportunities for ionic devices that leverage multiple material functionalities

    Modelling constraints on the emission inventory and on vertical dispersion for CO and SO<sub>2</sub> in the Mexico City Metropolitan Area using Solar FTIR and zenith sky UV spectroscopy

    No full text
    International audienceEmissions of air pollutants in and around urban areas lead to negative health impacts on the population. To estimate these impacts, it is important to know the sources and transport mechanisms of the pollutants accurately. Mexico City has a large urban fleet in a topographically constrained basin leading to high levels of carbon monoxide (CO). Large point sources of sulfur dioxide (SO2) surrounding the basin lead to episodes with high concentrations. An Eulerian grid model (CAMx) and a particle trajectory model (FLEXPART) are used to evaluate the estimates of CO and SO2 in the current emission inventory using mesoscale meteorological simulations from MM5. Vertical column measurements of CO are used to constrain the total amount of emitted CO in the model and to identify the most appropriate vertical dispersion scheme. Zenith sky UV spectroscopy is used to estimate the emissions of SO2 from a large power plant and the Popocatépetl volcano. Results suggest that the models are able to identify correctly large point sources and that both the power plant and the volcano impact the MCMA. Modelled concentrations of CO based on the current emission inventory match observations suggesting that the current total emissions estimate is correct. Possible adjustments to the spatial and temporal distribution can be inferred from model results. Accurate source and dispersion modelling provides feedback for development of the emission inventory, verification of transport processes in air quality models and guidance for policy decisions

    Modelling constraints on the emission inventory and on vertical dispersion for CO and SO2 in the Mexico City Metropolitan Area using Solar FTIR and zenith sky UV spectroscopy

    Get PDF
    Emissions of air pollutants in and around urban areas lead to negative health impacts on the population. To estimate these impacts, it is important to know the sources and transport mechanisms of the pollutants accurately. Mexico City has a large urban fleet in a topographically constrained basin leading to high levels of carbon monoxide ( CO). Large point sources of sulfur dioxide (SO2) surrounding the basin lead to episodes with high concentrations. An Eulerian grid model (CAMx) and a particle trajectory model ( FLEXPART) are used to evaluate the estimates of CO and SO2 in the current emission inventory using mesoscale meteorological simulations from MM5. Vertical column measurements of CO are used to constrain the total amount of emitted CO in the model and to identify the most appropriate vertical dispersion scheme. Zenith sky UV spectroscopy is used to estimate the emissions of SO2 from a large power plant and the Popocatepetl volcano. Results suggest that the models are able to identify correctly large point sources and that both the power plant and the volcano impact the MCMA. Modelled concentrations of CO based on the current emission inventory match observations suggesting that the current total emissions estimate is correct. Possible adjustments to the spatial and temporal distribution can be inferred from model results. Accurate source and dispersion modelling provides feedback for development of the emission inventory, verification of transport processes in air quality models and guidance for policy decisions

    Disordered Environments in Spatial Games

    Full text link
    The Prisoner's dilemma is the main game theoretical framework in which the onset and maintainance of cooperation in biological populations is studied. In the spatial version of the model, we study the robustness of cooperation in heterogeneous ecosystems in spatial evolutionary games by considering site diluted lattices. The main result is that due to disorder, the fraction of cooperators in the population is enhanced. Moreover, the system presents a dynamical transition at ρ\rho^*, separating a region with spatial chaos from one with localized, stable groups of cooperators.Comment: 6 pages, 5 figure

    Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns

    Get PDF
    A wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Four distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes, were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic in addition to meteorological processes. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that some alkanes are underestimated in the emissions inventory, while some olefins and aromatics are overestimated
    corecore