211 research outputs found

    Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy

    Get PDF
    The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature of this surface material and compare it to remote sensing observations. We compare data from the double focusing mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission and previously published data from the two mass spectrometers COSAC (COmetary Sampling And Composition) and Ptolemy on the lander. The mass spectra of all three instruments show very similar patterns of mainly CHO-bearing molecules that sublimate at temperatures of 275 K. The DFMS data also show a great variety of CH-, CHN-, CHS-, CHO2- and CHNO-bearing saturated and unsaturated species. Methyl isocyanate, propanal and glycol aldehyde suggested by the earlier analysis of the measured COSAC spectrum could not be confirmed. The presence of polyoxymethylene in the Ptolemy spectrum was found to be unlikely. However, the signature of the aromatic compound toluene was identified in DFMS and Ptolemy data. Comparison with remote sensing instruments confirms the complex nature of the organics on the surface of 67P, which is much more diverse than anticipated

    EDGAR 2.0: an enhanced software platform for comparative gene content analyses.

    Get PDF
    The rapidly increasing availability of microbial genome sequences has led to a growing demand for bioinformatics software tools that support the functional analysis based on the comparison of closely related genomes. By utilizing comparative approaches on gene level it is possible to gain insights into the core genes which represent the set of shared features for a set of organisms under study. Vice versa singleton genes can be identified to elucidate the specific properties of an individual genome. Since initial publication, the EDGAR platform has become one of the most established software tools in the field of comparative genomics. Over the last years, the software has been continuously improved and a large number of new analysis features have been added. For the new version, EDGAR 2.0, the gene orthology estimation approach was newly designed and completely re-implemented. Among other new features, EDGAR 2.0 provides extended phylogenetic analysis features like AAI (Average Amino Acid Identity) and ANI (Average Nucleotide Identity) matrices, genome set size statistics and modernized visualizations like interactive synteny plots or Venn diagrams. Thereby, the software supports a quick and user-friendly survey of evolutionary relationships between microbial genomes and simplifies the process of obtaining new biological insights into their differential gene content. All features are offered to the scientific community via a web-based and therefore platform-independent user interface, which allows easy browsing of precomputed datasets. The web server is accessible at http://edgar.computational.bio

    BRIGEP—the BRIDGE-based genome–transcriptome–proteome browser

    Get PDF
    The growing amount of information resulting from the increasing number of publicly available genomes and experimental results thereof necessitates the development of comprehensive systems for data processing and analysis. In this paper, we describe the current state and latest developments of our BRIGEP bioinformatics software system consisting of three web-based applications: GenDB, EMMA and ProDB. These applications facilitate the processing and analysis of bacterial genome, transcriptome and proteome data and are actively used by numerous international groups. We are currently in the process of extensively interconnecting these applications. BRIGEP was developed in the Bioinformatics Resource Facility of the Center for Biotechnology at Bielefeld University and is freely available. A demo project with sample data and access to all three tools is available at . Code bundles for these and other tools developed in our group are accessible on our FTP server at

    Visualizing post genomics data-sets on customized pathway maps by ProMeTra – aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example

    Get PDF
    Neuweger H, Persicke M, Albaum S, et al. Visualizing post genomics data-sets on customized pathway maps by ProMeTra – aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Systems Biology. 2009;3(1): 82.Background: The rapid progress of post-genomic analyses, such as transcriptomics, proteomics, and metabolomics has resulted in the generation of large amounts of quantitative data covering and connecting the complete cascade from genotype to phenotype for individual organisms. Various benefits can be achieved when these ''Omics'' data are integrated, such as the identification of unknown gene functions or the elucidation of regulatory networks of whole organisms. In order to be able to obtain deeper insights in the generated datasets, it is of utmost importance to present the data to the researcher in an intuitive, integrated, and knowledge-based environment. Therefore, various visualization paradigms have been established during the last years. The visualization of ''Omics'' data using metabolic pathway maps is intuitive and has been applied in various software tools. It has become obvious that the application of web-based and user driven software tools has great potential and benefits from the use of open and standardized formats for the description of pathways. Results: In order to combine datasets from heterogeneous ''Omics'' sources, we present the web-based ProMeTra system that visualizes and combines datasets from transcriptomics, proteomics, and metabolomics on user defined metabolic pathway maps. Therefore, structured exchange of data with our ''Omics'' applications Emma 2, Qupe and MeltDB is employed. Enriched SVG images or animations are generated and can be obtained via the user friendly web interface. To demonstrate the functionality of ProMeTra, we use quantitative data obtained during a fermentation experiment of the L-lysine producing strain Corynebacterium glutamicum DM1730. During fermentation, oxygen supply was switched off in order to perturb the system and observe its reaction. At six different time points, transcript abundances, intracellular metabolite pools, as well as extracellular glucose, lactate, and L-lysine levels were determined. Conclusion: The interpretation and visualization of the results of this complex experiment was facilitated by the ProMeTra software. Both transcriptome and metabolome data were visualized on a metabolic pathway map. Visual inspection of the combined data confirmed existing knowledge but also delivered novel correlations that are of potential biotechnological importance

    CoryneCenter – An online resource for the integrated analysis of corynebacterial genome and transcriptome data

    Get PDF
    Neuweger H, Baumbach J, Albaum S, et al. CoryneCenter: an online resource for the integrated analysis of corynebacterial genome and transcriptome data. BMC Systems Biology. 2007;1(1): 55.Background: The introduction of high-throughput genome sequencing and post-genome analysis technologies, e.g. DNA microarray approaches, has created the potential to unravel and scrutinize complex gene-regulatory networks on a large scale. The discovery of transcriptional regulatory interactions has become a major topic in modern functional genomics. Results: To facilitate the analysis of gene-regulatory networks, we have developed CoryneCenter, a web-based resource for the systematic integration and analysis of genome, transcriptome, and gene regulatory information for prokaryotes, especially corynebacteria. For this purpose, we extended and combined the following systems into a common platform: (1) GenDB, an open source genome annotation system, (2) EMMA, a MAGE compliant application for high-throughput transcriptome data storage and analysis, and (3) CoryneRegNet, an ontology-based data warehouse designed to facilitate the reconstruction and analysis of gene regulatory interactions. We demonstrate the potential of CoryneCenter by means of an application example. Using microarray hybridization data, we compare the gene expression of Corynebacterium glutamicum under acetate and glucose feeding conditions: Known regulatory networks are confirmed, but moreover CoryneCenter points out additional regulatory interactions. Conclusion: CoryneCenter provides more than the sum of its parts. Its novel analysis and visualization features significantly simplify the process of obtaining new biological insights into complex regulatory systems. Although the platform currently focusses on corynebacteria, the integrated tools are by no means restricted to these species, and the presented approach offers a general strategy for the analysis and verification of gene regulatory networks. CoryneCenter provides freely accessible projects with the underlying genome annotation, gene expression, and gene regulation data. The system is publicly available at http://www.CoryneCenter.d

    Multi-membership gene regulation in pathway based microarray analysis

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit

    It's a Trap! A Review of MOMA and Other Ion Traps in Space or Under Development

    Get PDF
    Since the Viking Program, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, including (from the inner to outer reaches): Venus (Pioneer); our moon (LADEE); Mars (Viking, Phoenix, and Mars Science Laboratory); and, Saturns largest moon Titan (Cassini-Huygens). More recently, however, ion trap mass spectrometer (ITMS) instruments have found a niche as smaller, versatile alternatives to traditional quadrupole mass analyzers, capable of in situ characterization of planetary environments and the search for organic matter. For example, whereas typical QMS systems are limited to a mass range up to 500 Da and normally require multiple RF frequencies and pressures of less than 10(exp -6) mbar for optimal operation, ITMS instruments commonly reach upwards of 1000 Da or more on a single RF frequency, and function in higher pressure environments up to 10(exp -3) mbar

    Performance of the Linear Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer (MOMA) Investigation on the 2018 Exomars Rover

    Get PDF
    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from degradation derived from cosmic radiation and/or oxidative chemical reactions. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. The MOMA investigation is led by the Max Planck Institute for Solar System Research (MPS) with the mass spectrometer subsystem provided by NASA GSFC. MOMA's linear ion trap mass spectrometer (ITMS) is designed to analyze molecular composition of: (i) gas evolved from pyrolyzed powder samples and separated in a gas chromatograph; and, (ii) ions directly desorbed from crushed solid samples at Mars ambient pressure, as enabled by a pulsed UV laser system, fast-actuating aperture valve and capillary ion inlet. Breadboard ITMS and associated electronics have been advanced to high end-to-end fidelity in preparation for flight hardware delivery to Germany in 2015

    TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach

    Get PDF
    Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW. TACOA - Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics. 2009;10(1):56.Background: Metagenomics, or the sequencing and analysis of collective genomes (metagenomes) of microorganisms isolated from an environment, promises direct access to the "unculturable majority". This emerging field offers the potential to lay solid basis on our understanding of the entire living world. However, the taxonomic classification is an essential task in the analysis of metagenomics data sets that it is still far from being solved. We present a novel strategy to predict the taxonomic origin of environmental genomic fragments. The proposed classifier combines the idea of the k-nearest neighbor with strategies from kernel-based learning. Results Our novel strategy was extensively evaluated using the leave-one-out cross validation strategy on fragments of variable length (800 bp – 50 Kbp) from 373 completely sequenced genomes. TACOA is able to classify genomic fragments of length 800 bp and 1 Kbp with high accuracy until rank class. For longer fragments ≥ 3 Kbp accurate predictions are made at even deeper taxonomic ranks (order and genus). Remarkably, TACOA also produces reliable results when the taxonomic origin of a fragment is not represented in the reference set, thus classifying such fragments to its known broader taxonomic class or simply as "unknown". We compared the classification accuracy of TACOA with the latest intrinsic classifier PhyloPythia using 63 recently published complete genomes. For fragments of length 800 bp and 1 Kbp the overall accuracy of TACOA is higher than that obtained by PhyloPythia at all taxonomic ranks. For all fragment lengths, both methods achieved comparable high specificity results up to rank class and low false negative rates are also obtained. Conclusion: An accurate multi-class taxonomic classifier was developed for environmental genomic fragments. TACOA can predict with high reliability the taxonomic origin of genomic fragments as short as 800 bp. The proposed method is transparent, fast, accurate and the reference set can be easily updated as newly sequenced genomes become available. Moreover, the method demonstrated to be competitive when compared to the most current classifier PhyloPythia and has the advantage that it can be locally installed and the reference set can be kept up-to-date. Background
    corecore