291 research outputs found

    Glassiness and constrained dynamics of a short-range non-disordered spin model

    Full text link
    We study the low temperature dynamics of a two dimensional short-range spin system with uniform ferromagnetic interactions, which displays glassiness at low temperatures despite the absence of disorder or frustration. The model has a dual description in terms of free defects subject to dynamical constraints, and is an explicit realization of the ``hierarchically constrained dynamics'' scenario for glassy systems. We give a number of exact results for the statics of the model, and study in detail the dynamical behaviour of one-time and two-time quantities. We also consider the role played by the configurational entropy, which can be computed exactly, in the relation between fluctuations and response.Comment: 10 pages, 9 figures; minor changes, references adde

    Tweed in Martensites: A Potential New Spin Glass

    Full text link
    We've been studying the ``tweed'' precursors above the martensitic transition in shape--memory alloys. These characteristic cross--hatched modulations occur for hundreds of degrees above the first--order shape--changing transition. Our two--dimensional model for this transition, in the limit of infinite elastic anisotropy, can be mapped onto a spin--glass Hamiltonian in a random field. We suggest that the tweed precursors are a direct analogy of the spin--glass phase. The tweed is intermediate between the high--temperature cubic phase and the low--temperature martensitic phase in the same way as the spin--glass phase can be intermediate between ferromagnet and antiferromagnet.Comment: 18 pages and four figures (included

    Fermi Surface as a Driver for the Shape-Memory Effect in AuZn

    Full text link
    Martensites are materials that undergo diffusionless, solid-state transitions. The martensitic transition yields properties that depend on the history of the material and may allow it to recover its previous shape after plastic deformation. This is known as the shape-memory effect (SME). We have succeeded in identifying the primary electronic mechanism responsible for the martensitic transition in the shape-memory alloy AuZn by using Fermi-surface measurements (de Haas-van Alphen oscillations) and band-structure calculations. This strongly suggests that electronic band structure is an important consideration in the design of future SME alloys

    Observation of a continuous phase transition in a shape-memory alloy

    Full text link
    Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au_{0.52}Zn_{0.48} above and below their martensitic transition temperatures (T_M=64K and 45K, respectively). In each composition, elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q = (1.33,0.67,0) at temperatures corresponding to each sample's T_M. Although the new Bragg peaks appear in a discontinuous manner in the Au_{0.52}Zn_{0.48} sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near the transition temperature are in favorable accord with a mean-field approximation. A Landau-theory-based fit to the pressure dependence of the transition temperature suggests the presence of a critical endpoint in the AuZn phase diagram located at T_M*=2.7K and p*=3.1GPa, with a quantum saturation temperature \theta_s=48.3 +/- 3.7K.Comment: 6 figure

    Lenalidomide treatment and prognostic markers in relapsed or refractory chronic lymphocytic leukemia: data from the prospective, multicenter phase-II CLL-009 trial

    Get PDF
    Efficacy of lenalidomide was investigated in 103 patients with relapsed/refractory chronic lymphocytic leukemia (CLL) treated on the prospective, multicenter randomized phase-II CLL-009 trial. Interphase cytogenetic and mutational analyses identified TP53 mutations, unmutated IGHV, or del(17p) in 36/96 (37.5%), 68/88 (77.3%) or 22/92 (23.9%) patients. The overall response rate (ORR) was 40.4% (42/104). ORRs were similar irrespective of TP53 mutation (36.1% (13/36) vs 43.3% (26/60) for patients with vs without mutation) or IGHV mutation status (45.0% (9/20) vs 39.1% (27/68)); however, patients with del(17p) had lower ORRs than those without del(17p) (21.7% (5/22) vs 47.1% (33/70); P=0.049). No significant differences in progression-free survival and overall survival (OS) were observed when comparing subgroups defined by the presence or absence of high-risk genetic characteristics. In multivariate analyses, only multiple prior therapies (greater than or equal to3 lines) significantly impacted outcomes (median OS: 21.2 months vs not reached; P=0.019). This analysis indicates that lenalidomide is active in patients with relapsed/refractory CLL with unfavorable genetic profiles, including TP53 inactivation or unmutated IGHV. (ClinicalTrials.gov identifier: NCT00963105)

    A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus

    Get PDF
    Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus

    A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage

    Get PDF
    In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi) is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP) signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE) RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit—from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger

    c-di-GMP Turn-Over in Clostridium difficile Is Controlled by a Plethora of Diguanylate Cyclases and Phosphodiesterases

    Get PDF
    Clostridium difficile infections have become a major healthcare concern in the last decade during which the emergence of new strains has underscored this bacterium's capacity to cause persistent epidemics. c-di-GMP is a bacterial second messenger regulating diverse bacterial phenotypes, notably motility and biofilm formation, in proteobacteria such as Vibrio cholerae, Pseudomonas aeruginosa, and Salmonella. c-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a conserved GGDEF domain. It is degraded by phosphodiesterases (PDEs) that contain either an EAL or an HD-GYP conserved domain. Very little is known about the role of c-di-GMP in the regulation of phenotypes of Gram-positive or fastidious bacteria. Herein, we exposed the main components of c-di-GMP signalling in 20 genomes of C. difficile, revealed their prevalence, and predicted their enzymatic activity. Ectopic expression of 31 of these conserved genes was carried out in V. cholerae to evaluate their effect on motility and biofilm formation, two well-characterized phenotype alterations associated with intracellular c-di-GMP variation in this bacterium. Most of the predicted DGCs and PDEs were found to be active in the V. cholerae model. Expression of truncated versions of CD0522, a protein with two GGDEF domains and one EAL domain, suggests that it can act alternatively as a DGC or a PDE. The activity of one purified DGC (CD1420) and one purified PDE (CD0757) was confirmed by in vitro enzymatic assays. GTP was shown to be important for the PDE activity of CD0757. Our results indicate that, in contrast to most Gram-positive bacteria including its closest relatives, C. difficile encodes a large assortment of functional DGCs and PDEs, revealing that c-di-GMP signalling is an important and well-conserved signal transduction system in this human pathogen
    • …
    corecore