9 research outputs found

    Quantitative Mass Spectrometry Analysis Using PAcIFIC for the Identification of Plasma Diagnostic Biomarkers for Abdominal Aortic Aneurysm

    Get PDF
    BACKGROUND: Abdominal aortic aneurysm (AAA) is characterized by increased aortic vessel wall diameter (>1.5 times normal) and loss of parallelism. This disease is responsible for 1-4% mortality occurring on rupture in males older than 65 years. Due to its asymptomatic nature, proteomic techniques were used to search for diagnostic biomarkers that might allow surgical intervention under nonlife threatening conditions. METHODOLOGY/PRINCIPAL FINDINGS: Pooled human plasma samples of 17 AAA and 17 control patients were depleted of the most abundant proteins and compared using a data-independent shotgun proteomic strategy, Precursor Acquisition Independent From Ion Count (PAcIFIC), combined with spectral counting and isobaric tandem mass tags. Both quantitative methods collectively identified 80 proteins as statistically differentially abundant between AAA and control patients. Among differentially abundant proteins, a subgroup of 19 was selected according to Gene Ontology classification and implication in AAA for verification by Western blot (WB) in the same 34 individual plasma samples that comprised the pools. From the 19 proteins, 12 were detected by WB. Five of them were verified to be differentially up-regulated in individual plasma of AAA patients: adiponectin, extracellular superoxide dismutase, protein AMBP, kallistatin and carboxypeptidase B2. CONCLUSIONS/SIGNIFICANCE: Plasma depletion of high abundance proteins combined with quantitative PAcIFIC analysis offered an efficient and sensitive tool for the screening of new potential biomarkers of AAA. However, WB analysis to verify the 19 PAcIFIC identified proteins of interest proved inconclusive save for five proteins. We discuss these five in terms of their potential relevance as biological markers for use in AAA screening of population at risk

    Reverse Regulatory Pathway (H2S / PGE2 / MMP) in Human Aortic Aneurysm and Saphenous Vein Varicosity

    No full text
    Hydrogen sulfide (H2S) is a mediator with demonstrated protective effects for the cardiovascular system. On the other hand, prostaglandin (PG)E2 is involved in vascular wall remodeling by regulating matrix metalloproteinase (MMP) activities. We tested the hypothesis that endogenous H2S may modulate PGE2, MMP-1 activity and endogenous tissue inhibitors of MMPs (TIMP-1/-2). This regulatory pathway could be involved in thinning of abdominal aortic aneurysm (AAA) and thickening of saphenous vein (SV) varicosities. The expression of the enzyme responsible for H2S synthesis, cystathionine-γ-lyase (CSE) and its activity, were significantly higher in varicose vein as compared to SV. On the contrary, the endogenous H2S level and CSE expression were lower in AAA as compared to healthy aorta (HA). Endogenous H2S was responsible for inhibition of PGE2 synthesis mostly in varicose veins and HA. A similar effect was observed with exogenous H2S and consequently decreasing active MMP-1/TIMP ratios in SV and varicose veins. In contrast, in AAA, higher levels of PGE2 and active MMP-1/TIMP ratios were found versus HA. These findings suggest that differences in H2S content in AAA and varicose veins modulate endogenous PGE2 production and consequently the MMP/TIMP ratio. This mechanism may be crucial in vascular wall remodeling observed in different vascular pathologies (aneurysm, varicosities, atherosclerosis and pulmonary hypertension)
    corecore