289 research outputs found

    Persistence of Armor Layers in Gravel-Bed Streams

    Get PDF
    Streambed surfaces are typically coarsened, or armored, at low flows, but there is little evidence of their condition during floods, when significant hydraulic and ecologic disturbance occurs. Some flume experiments have been used to conclude that armor layers wash out during floods, although other experiments have produced a persistent armor layer. In the absence of clear field or flume evidence, we use a surface-based transport model in an inverse prediction of surface grain size as a function of transport rates observed in the field. The predicted surface grain size matches that observed at low flow and indicates that low-flow armor layers persist at large flows. In the field, transport grain size increases with transport rate, reducing or eliminating adjustments in bed surface grain size as flow and transport increase. A persistent armor layer considerably simplifies the prediction of sediment transport, hydraulic roughness, and habitat disturbance during floods

    In-Situ Nuclear Magnetic Resonance Investigation of Strain, Temperature, and Strain-Rate Variations of Deformation-Induced Vacancy Concentration in Aluminum

    Get PDF
    Critical strain to serrated flow in solid solution alloys exhibiting dynamic strain aging (DSA) or Portevin–LeChatelier effect is due to the strain-induced vacancy production. Nuclear magnetic resonance (NMR) techniques can be used to monitor in situ the dynamical behavior of point and line defects in materials during deformation, and these techniques are nondestructive and noninvasive. The new CUT-sequence pulse method allowed an accurate evaluation of the strain-enhanced vacancy diffusion and, thus, the excess vacancy concentration during deformation as a function of strain, strain rate, and temperature. Due to skin effect problems in metals at high frequencies, thin foils of Al were used and experimental results correlated with models based on vacancy production through mechanical work (vs thermal jogs), while in situ annealing of excess vacancies is noted at high temperatures. These correlations made it feasible to obtain explicit dependencies of the strain-induced vacancy concentration on test variables such as the strain, strain rate, and temperature. These studies clearly reveal the power and utility of these NMR techniques in the determination of deformation-induced vacancies in situ in a noninvasive fashion.

    Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices

    Get PDF
    The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated superlattices of the paramagnetic metal LaNiO3 and the wide-gap insulator LaAlO3 with atomically precise layer sequences. Using optical ellipsometry and low-energy muon spin rotation, superlattices with LaNiO3 as thin as two unit cells are shown to undergo a sequence of collective metalinsulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO3 layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems

    A Quasi-analytical Interpolation Method for Pricing American Options under General Multi-dimensional Diffusion Processes

    Get PDF
    We present a quasi-analytical method for pricing multi-dimensional American options based on interpolating two arbitrage bounds, along the lines of Johnson (1983). Our method allows for the close examination of the interpolation parameter on a rigorous theoretical footing instead of empirical regression. The method can be adapted to general diffusion processes as long as quick and accurate pricing methods exist for the corresponding European and perpetual American options. The American option price is shown to be approximately equal to an interpolation of two European option prices with the interpolation weight proportional to a perpetual American option. In the Black-Scholes model, our method achieves the same e±ciency as Barone-Adesi and Whaley's (1987) quadratic approximation with our method being generally more accurate for out-of-the-money and long-maturity options. When applied to Heston's stochastic volatility model, our method is shown to be extremely e±cient and fairly accurate

    Pricing multiple exercise American options by linear programming

    Get PDF
    We consider the problem of computing the lower hedging price of American options of the call and put type written on a non-dividend paying stock in a non-recombinant tree model with multiple exercise rights. We prove using a simple argument that an optimal exercise policy for an option with h exercise rights is to delay exercise until the last h periods. The result implies that the mixedinteger programming model for computing the lower hedging price and the optimal exercise and hedging policy has a linear programming relaxation that is exact, i.e., the relaxation admits an optimal solution where all variables required to be integral have integer values. © Springer International Publishing Switzerland 2017
    corecore