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Methods and materials

Sample preparation and characterization

High-quality superlattices (SLs) composed of N u.c. thick consecutive layers of LaNiO3 and

LaAlO3 were grown by pulsed-laser deposition from stoichiometric targets using a KrF excimer

laser with 2 Hz pulse rate and 1.6 J/cm2 energy density. Both compounds were deposited in 0.5

mbar oxygen atmosphere at 730◦C and subsequently annealed in 1 bar oxygen atmosphere at

690◦C for 30 min. We have grown SLs on two kinds of single-crystalline substrates: SrTiO3,
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Table SI: Average lattice constants of 100 nm thick N = 2 SLs grown on (001)-oriented SrTiO3

and LaSrAlO4 substrates (determined from the main (103) layer Bragg peak positions in Figs.
1B and 1C) in comparison with the lattice constants of strain-free pseudo-cubic LaNiO3 and
LaAlO3 and the same substrates.

SL on LaSrAlO4 SL on SrTiO3 LaNiO3 LaAlO3 LaSrAlO4 SrTiO3

a, b (Å) 3.769 3.845 3.837 3.789 3.756 3.905
c (Å) 3.853 3.790 3.837 3.789 12.636 3.905

which induces tensile strain in the overlayer, and LaSrAlO4, which induces compressive strain

(see Table SI). All substrates were 10 mm×10 mm×0.5 mm or 5 mm×5 mm×0.5 mm (001)-

oriented plates with a miscut angle < 0.1◦. We chose to work on 100 nm thick SLs in order

to enhance the dielectric response and to confine the muon stopping distribution within the SL.

The chosen thickness range also allows us to avoid complications arising from initial growth of

TMO layers on a substrate (S1). The growth rates for the individual layers were controlled by

counting laser pulses in combination with feedback from high-resolution x-ray diffraction mea-

surements. The crystallinity, superlattice structure, and sharpness of the interfaces (with rough-

ness < 1 u.c.) were verified by momentum-dependent x-ray reflectivity and high-resolution hard

x-ray diffraction scans which revealed, besides the perovskite Bragg reflections, satellite peaks

due to the long-range multilayer superstructure and Kiessig fringes caused by total-thickness

interference.

Representative scans along the specular truncation rod are shown in Fig. S1 for samples

grown on the different substrates with different individual layer thicknesses N (u.c.), and total

thicknesses D (Å). Symmetrically around the (001) layer Bragg peak one can see superlattice

satellites and M − 2 thickness fringe maxima, where M is the number of bilayer repetitions.

The position of the satellites corresponds to a LaNiO3 (N u.c.)|LaAlO3 (N u.c.) bilayer thick-

ness of 30± 1 Å and 15.5± 0.5 Å for the N = 4 (Figs. S1A and S1B) and N = 2 (Figs. 1C

and 1D), respectively, that is in a good agreement with the 2Nc value, where c is the average

epilayer lattice constant in Table SI. Accordingly, the Kiessig fringes in Figs. S1 and S2 cor-

respond to the total thickness M × 2Nc. The thickness fringes for the 100 nm thick N = 2
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Figure S1: High-resolution x-ray diffraction measured with 10 keV synchrotron radiation at the
MPI-MF beamline of the ANKA facility at the Karlsruhe Institute of Technology for the (A,
B) 30 nm (N = 4) and (C, D) 100 nm (N = 2) thick superlattices on (A,C) SrTiO3 and (B,
D) LaSrAlO4. The thickness of the SL in (D) is determined from the hard x-ray reflectivity
measurements in Fig. 2D. The 100 nm thick samples were used for low-energy muon spin
rotation and ellipsometry experiments.

SL on LaSAlO4 are damped at higher l values in Fig. S1D, but well resolved in Fig. S2D.

The x-ray reflectivity shown in Fig. S2 was also used to characterize the superlattice structure

and sharpness of the interfaces. From fits to the reflectivity, using the Parratt algorithm and

tabulated values for the optical constants (S2,S3, S4), we obtained the thickness (dLAO, dLNO)

and roughness (σLAO, σLNO) of the individual layers. Using a minimal set of fitting parameters

(assuming M identical LaNiO3 and LaAlO3 layers), we show in Fig. S2 a good description

of the data. The roughness parameters are all around 1 u.c or less and represent values aver-

aged over a large area of ∼(10×1) mm which corresponds to the x-ray spot size and inevitably

contains planar defects such as stacking faults. This indicates the presence of atomically flat

and abrupt interfaces. Some of the samples were also checked by high-resolution transmission

electron microscopy (TEM), providing a local picture of the atomic stacking sequence. In Fig.
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Figure S2: Hard x-ray reflectivity measured with Cu Kα radiation and fits for the (A) 23 nm
and (B) 100 nm thick N = 2 superlattices on SrTiO3 and 100 nm thick (C) N = 2 and (D)
N = 4 superlattices on LaSrAlO4. The samples in (C-D) were used for low-energy muon spin
rotation and ellipsometry experiments.

S3 a high-angle annular dark-field image of a LaNiO3 (2 u.c.)|LaAlO3 (1 u.c.) SL is shown. In

this imaging mode, also known as Z-contrast, the contrast is proportional to Zn, where Z is the

atomic number and n is about 1.7. Subsequent dark (marked by arrows) and bright layers show

a chemical variation of the layer system. In this example a sequence of two LaNiO3 layers and

one LaAlO3 layer is visible which shows that even single layers can be deposited without dis-

tinct intermixing. The superior quality of our samples is also supported by resonant reflectivity

measurements performed on a sample grown under the same conditions. The analysis of those

data allowed some of us to determine the atomic-layer resolved orbital polarization in these

superlattices (S5).

Substrate-induced strain and relaxation effects

In general, the physical properties of thin films are strongly influenced by substrate-induced

4



Figure S3: High-angle annu-
lar dark field image of the
LaNiO3 (2 u.c.)|LaAlO3 (1 u.c.)
superlattice. Subsequent dark (marked
by arrows) and bright layers show the
chemical variation of the layer system.

strain and relaxation effects. It has thus far proven difficult to separate the influence of the di-

mensionality from that of other parameters such as the strain-induced local structural distortions

and interfacial defects. In order to discriminate between these effects we chose to work on SLs

grown on both SrTiO3, which induces tensile strain in the overlayer, and LaSrAlO4, which in-

duces compressive strain. Our comprehensive reciprocal-space mapping (RSM) measurements

(S6) supplemented by high-resolution TEM micrographs verified that strain and relaxation ef-

fects are strongly affected by inversion of the type of substrate-induced strain, but remain essen-

tially unchanged by varying the individual layer thicknesses. In our study, we show that, on the

contrary, the transport and magnetic properties of the SLs are almost unaffected by inversion

of the type of substrate-induced strain, but qualitatively transformed by varying the number of

consecutive unit cells within the LaNiO3 layers. Since the metal-insulator and spin-ordering

transitions occur in the N = 2 SLs irrespective of whether the substrate-induced strain is com-

pressive or tensile, strain-induced local structural distortions and interfacial defects are ruled

out as primary driving forces.

Figure 1 of the main text shows contour maps of the diffracted X-ray intensity distribu-

tion in the vicinity of the 103 perovskite Bragg peak for three representative samples: N = 4

and N = 2 SLs grown on LaSrAlO4 (001), and an N = 2 SL on SrTiO3 (001). The anal-

ysis of the averaged in-plane and out-of-plane lattice constants (Table SI) indicates that com-
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Figure S4: Reciprocal-space maps in the vicinity of the symmetric (004) peak of the 100 nm
thick N = 2 superlattices on (A) SrTiO3 and (B) LaSrAlO4 substrates. The relaxation triangle
is highlighted with a red line in (A). The angle β ≈ 2◦ quantifies the amount of gradual relax-
ation the SL has. (C) Horizontal cuts along the indicated in (B) qz values. The separation of the
two twin peaks reveal the formation of twin domains.

pressive strain reduces the in-plane lattice parameter by Δa/a ≈ 1.8 % relative to the bulk

LaNiO3 lattice, whereas tensile strain results in a reduction of the out-of-plane lattice constant

by Δc/c ≈ 1.2 %. These two types of local distortions in the perovskite structure are accommo-

dated by rotations of the NiO6 octahedra about different Cartesian axes (S7), which, in turn, ex-

ert an inequivalent influence on the LaNiO3 electronic structure. A distribution of the diffracted

intensity near the epilayer reflection for SLs grown on LaSrAlO4 has a characteristic triangular

shape, with dispersion along the in-plane (Qx) direction towards the 103 Bragg reflection of

strain-free bulk LaNiO3. This is in contrast to the tensile-strained SLs grown on SrTiO3, where

the strain relaxation is characterized by nearly elliptical contour lines close to the 103 Bragg re-

flection of cubic LaAlO3. The tensile strain of SrTiO3 is (67± 3)% relaxed, and by comparing

with SLs of less total thickness, we identified a faint gradient-profile-relaxation effect as func-

tion of overlayer thickness, similar to the behavior observed in semiconductor heterostructures

(S8, S9). In addition to Fig. 1 of the main text, Fig. S4 shows RSMs of the symmetric 004 per-

ovskite Bragg peak measured with synchrotron radiation at the MPI-MF beamline of the ANKA

facility at the Karlsruhe Institute of Technology. The diffracted x-ray intensity distribution for
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Figure S5: High-resolution TEM micrographs of LaAlO3|LaNiO3 SLs on (A) LaSrAlO4 and
(B) SrTiO3 substrates. Defects are marked by arrows. The inset in (A) shows a magnified area
close to a planar defect.

the N = 2 SL on SrTiO3 (Fig. S4A) exhibits the triangular shape described in Refs. S8 and

S9. The effect of triangular relaxation was not observed in the thinner SL (not shown). Because

the lattice constants of the thin SL are almost equal to the ones of the thick sample, the SLs

grown on SrTiO3 seem to relax abruptly at the beginning of the growth. Further, from the peak

shape evolution, the SL gradually relaxes the tensile strain. The subtle thickness evolution of

the layer’s relaxation indicates that it is the substrate surface where abrupt strain-adapting mech-

anisms take place. The effect of tensile strain on TMO heterostructures may produce oxygen

vacancies (S10), which give rise to a different valence state of the Ni ion at the substrate inter-

face (S1). Figures S4B and S4C show that the distribution of the diffracted intensity near the

epilayer reflection for SLs grown on LaSrAlO4 has a double-peak splitting along the in-plane

(Qx) direction. This intensity pattern (only seen in thicker SLs grown on LaSrAlO4) suggests

the formation of twinning domains, as described in Refs. S11, S12. The two different relax-

ation mechanisms in the perovskite structure are confirmed by TEM measurements performed

on samples grown under the same conditions as in our study. Figure S5 shows high-resolution

TEM micrographs (recorded by a JEOL JEM4000FX microscope) of the LaNiO3 − LaAlO3
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layer systems. In the case of the LaSrAlO4 substrate (Fig. S5A) planar defects are visible

(marked by arrows) which are oriented perpendicular to the substrate plane and extend through

the entire SL. As shown in the magnified inset image, the stacking sequence changes at these

faults (yellow broken line). The size of the defect-free blocks varies between 15 and 50 nm.

The microstructure of the layer system on the SrTiO3 substrate (Fig. S5B) only very occasion-

ally shows planar defects. Instead, localized defects are found close to the substrate (marked by

arrows). These defects can be associated with the creation of oxygen vacancies and changes in

the oxygen coordination of Ni ions at the substrate interface. Recent photon energy-dependent

hard x-ray photoelectron spectroscopy measurements on some of our samples have confirmed

that the initial growth on the SrTiO3 surface leads to the Ni2+ valence state (S13). The oxygen

vacancy formation energy gradually decreases with increasing the in-plane perovskite lattice

spacing (S14), which can explain the marked difference in the oxygen vacancy concentration

in thin films grown under tensile or compressive strain (S10). Nevertheless, in our study, the

temperature-induced phase transitions occur in the N = 2 (but not in N = 4) SLs irrespective of

whether the substrate-induced strain is compressive or tensile, which clearly distinguishes these

transitions from those in highly oxygen deficient LaNiO3−δ (δ ≥ 0.25) (S15, S16). Moreover,

the reduced insulating phases require more than 1/3 of divalent Ni2+ in square planar (vs. per-

ovskite octahedral) sites. Based on the detailed characterization of our samples by means of

XRD, XAS, RSM, HAXPES, and TEM we can definitively rule out such a scenario.

In conclusion, our analysis confirms the excellent quality of the synthesized SLs, which

exhibit abrupt interfaces and excellent crystallinity. Defect-free, atomically precise 15-50 nm

blocks are separated by ∼ 1 u.c. stacking faults. These planar defects are inevitably caused by

strain relaxation effects, and can block the current flow through the atomically thin layers. We

have therefore used advanced local probes, such as spectroscopic ellipsometry and low-energy

muons, to study the intrinsic electronic transport and magnetic properties of the heterostruc-

tures.
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Figure S6: Experimental (open circles) and best-fit calculated (solid lines) ellipsometry spectra
of the N = 2 and N = 4 SLs on (A,B) LaSrAlO4 at T = 175 K and (C,D) SrTiO3 at T = 100
K. The angle of incidence of the polarized light was Φi = 82.5◦. Ellypsometry spectra of the
bare substrates measured at Φi = 77.5◦ are shown for comparison (black solid lines). The
gray shaded area in (C,D) indicates the region where the data analysis is affected by dielectric
microwave dispersion of the ferroelectric soft mode of SrTiO3.

Spectroscopic ellipsometry measurements and data analysis

We have used wide-band spectroscopic ellipsometry to accurately determine the dynamical

electrical conductivity and permittivity of the SLs. The distinct advantages of ellipsometry

are as follows. (i) In contrast to dc transport experiments, this method exposes the intrinsic

electrodynamic response of the SLs, which is not influenced by the substrate, contacts, and ex-

tended defects. (ii) As a low-energy spectroscopic tool, it serves to determine critical parame-

ters of the metal-insulator transition such as the energy gap and the density of carriers localized

below TMI . (iii) In comparison with other spectroscopic techniques, ellipsometry yields the
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Figure S7: Best-fit model functions ε1(ω) and ε2(ω) for the N = 2 and N = 4 SLs on (A)
LaSrAlO4 at T = 175 K and (B) SrTiO3 at T = 100 K, as obtained by inversion of the
ellipsometric parameters in Fig. S6. The shaded lines represent the Drude model simultaneous
fit to both ε1(ω) and ε2(ω) with parameters ωpl and γ described in the legends. The gray shaded
area in (B) indicates the region where the model fitting curves deviate significantly from the
data.

frequency-dependent complex dielectric function without the need for reference measurements

and Kramers-Kronig transformations. (iv) Variable angle ellipsometry is very sensitive to thin-

film properties due to the oblique incidence of light, and it is generally used to derive optical

constants of thin films and complex heterostructures (S17).

The experimental setup comprises three ellipsometers to cover the spectral range of 12 meV

to 6.5 eV. For the range 12 meV to 1 eV, we used a home-built ellipsometer attached to a

standard Fast-Fourier-Transform Bruker 66v/S FTIR interferometer. The far-infrared measure-

ments were performed at the infrared beamline IR1 of the Angstrm Quelle Karlsruhe ANKA

synchrotron light source at the Karlsruhe Institute of Technology. For the mid-infrared mea-

surements, we used the conventional glow-bar light source from a Bruker 66v/S FTIR. Finally,

temperature dependencies of the pseudo-dielectric permittivity ε∗1 at �ω = 0.8 eV were mea-

sured with a Woollam variable angle spectroscopic ellipsometer (VASE) equipped with an ultra
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Figure S8: Temperature dependence of the dc (A) resistivity and (B) conductivity of the N = 2
(green) and N = 4 (blue) SLs on LaSrAlO4. Solid squares represent the conductivity obtained
from the Drude model parameters in the legend of Fig. S7A, which exceeds the corresponding
σdc (T = 175 K) values by less than 20 %.

high-vacuum cold-finger cryostat operated at < 5 × 10−9 mbar chamber pressure.

The inherent capacity of Woollam VASE ellipsometers to measure relative changes of the

dielectric function on the order of 10−2 was boosted to an unprecedented level of 10−4 us-

ing temperature-modulation measurements of the dielectric constant at particular photon en-

ergies. The ellipsometric angles Ψ and Δ are defined through the complex Fresnel reflection

coefficients for light polarized parallel (rp) and perpendicular (rs) to the plane of incidence,

tan Ψ eiΔ = rp/rs. Figure S6 shows representative infrared spectra of Ψ(ω) and Δ(ω) for

the N = 4 and 2 SLs and for the bare LaSrAlO4 and SrTiO3 substrates. The details of the

data analysis have been discussed elsewhere (S18). The SLs were treated as single-layer films

according to an effective-medium approximation with a mixture of the nickelate and aluminate

layers. A wavelength-by-wavelength regression procedure has been employed to extract the

real and imaginary parts of the dielectric function (S19). Figure S7 shows the best-fit model

functions ε1(ω) and ε2(ω) obtained by inversion of the ellipsometric parameters in Fig. S6. The

infrared spectra are well described by a broad Drude response ε(ω) = ε∞ − ω2
pl/(ω

2 + iωγ)

with a ratio of scattering rate and plasma frequency γ/ωpl ≈ 0.1 − 0.2 that is typical for bulk
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complex oxides. The parameters in the Drude fit are well constrained, because both ε1(ω) and

ε2(ω) are available. The deviation of the Drude fit from the measured ε1(ω) and ε2(ω) below 30

meV in Fig. S7B (gray shadow area) can reflect the uncertainty in the inversion procedure for

SLs on SrTiO3 due to the microwave dispersion of the ferroelectric soft mode of SrTiO3 (S20)

and/or due to the presence of a dead layer with reduced conductivity at the substrate interface

(Fig. S5B). This low-energy uncertainty does not, however, affect the relative spectral weight

reduction, ΔSW ≈ 0.03 (±10%) per Ni atom within the gap energy range below ΩG ≈ 0.43

eV, at the metal insulator transition in the N = 2 SL on SrTiO3.

The effective mass enhancement m∗/m is estimated from the plasma frequency as

m∗/m =
4πe2n

mω2
pl

≈ 11.7

(ωpl, [eV ])2
, (1)

where n = 1
2
× 1.7 × 1022 cm−3, by assuming one electron per Ni atom. We note that ωpl is

almost independent of N , implying the volume fraction of the metallic LaNiO3 layers remains

the same in all SLs. With ωpl ≈ 1.1 eV, as derived from the Drude model fit in Fig. 2A,

we obtain m∗/m ≈ 10 which is in good agreement with the value for bulk LaNiO3 from the

specific heat measurements (S21). Using the Fermi energy EF = 0.5 eV derived from the

thermopower of LaNiO3 (S21), we estimate the Fermi velocity as

vF = c

√
2EF

mc2

m

m∗ ≈ 1.33 × 107cm/s. (2)

The mean free path, l, can be estimated from

l [Å] = vF τ =
vF

2πcγ
= 6.57 × 10−5 vF [cm/s]

γ [meV]
≈ 874

γ [meV]
. (3)

With γ ≈200 meV (90 meV), as derived from the Drude model fit in Fig. 2A and Fig. S7A,

we obtain l = 4.4 Å (9.7 Å) for the N = 2 (N = 4) SL on LaSrAlO4. For the N = 2

(N = 4) SL on SrTiO3 we estimate l = 6.4 Å (12 Å), respectively. Remarkably, the mean free

path correlates with the individual LaNiO3 layer thickness, testifying, along with the constant

volume fraction of the metallic layers, to the atomic quality of the interfaces .
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Our results indicate that, even in the N = 2 samples at T � TMI , the conductivity of

the LaNiO3 layers exhibits a clearly metallic temperature and frequency dependence. We de-

fine TMI as the temperature at which the temperature derivatives of both ε2(T ) (Figs. 2A

and 2B) and ε1(T ) (Figs. 2C and 2D) change sign. The consistent temperature evolution

of ε1 and ε2 over a broad range of photon energies demonstrates the intrinsic nature of the

charge-localization transition observed in SLs with N = 2. In the ω → 0 limit this criterion

is analogous to a sign change of the temperature derivative of the dc resistivity, dρ/dT , ob-

served at TMI in bulk RNiO3. This is in contrast to results of recent dc electrical resistivity

measurements where the insulating behavior of 2 u.c. thick LaNiO3 is attributed to variable

range hopping transport (S22) or film-substrate interface effects (S23, S24). For a thickness

of N = 2 u.c. the behavior of (LaNiO3)N/(SrMnO3)2 SLs is insulating over the entire tem-

perature range, whereas the N = 4 u.c. SL is metallic with an upturn in resistivity below

50 K. Even in the N = 4 u.c. metallic sample, the mean free path l is estimated to be less

than a single unit cell (S22). This suggests that Anderson localization induced by disorder is

responsible for the insulating behavior in these systems, in contrast to the sharp temperature

dependence observed in our SLs that indicates a metal-insulator transition driven by collective

interactions. Ultrathin single films of LaNiO3 show a crossover from metallic to insulating

behavior at a larger thickness (S23, S24), which varies from 6 u.c. to 13 u.c. depending on

the substrate. We argue that the presence of planar stacking fault defects and a dead layer with

reduced conductivity at the substrate interface, as discussed above (Fig. S5), makes the analysis

of the temperature-dependent resistivity measurements challenging and inconclusive about the

conduction mechanism of ultrathin LaNiO3 films. Nevertheless, in order to directly compare

our results with those reported in Refs. S22, S23, and S24, we have also performed dc resis-

tivity measurements on the N = 2 and N = 4 SLs on LaSrAlO4. Figure S8 shows that the

dc resistivity of the N = 2 SL exhibits a crossover from metallic to insulating phase behavior

below TMI ≈ 150 K . The sharp temperature dependence in the insulating state does not fit

to the stretched exponential function (S22) and can not be attributed to variable range hopping
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transport. Figure S8 also shows that our dc and optical conductivity data (Figs. 2A and S7A)

are in close agreement. This resemblance once more indicates a low density of stacking faults

in our samples.

Low-energy μSR instrumentation and data analysis

Low energy muon spin rotation/relaxation (LE-μSR) uses ∼ 100% spin polarized positive

muons of tunable keV-scale energy to study local magnetic properties of thin films or het-

erostructures as a function of the muon implantation depth. The details of the data acquisition

and analysis have been described elsewhere (S25, S26) . More details of the LE-μSR meth-

ods and apparatus can be found on the website of the LEM group at Paul Scherrer Institute

(S27). This technique has been recently successfully applied to the case of magnetic ultra-

thin films (S28) and wires (S29). Figure S9 shows the muon stopping profile calculated for

Figure S9: Muon stopping profile in the
N = 2 SL showing the calculated prob-
ability that μ+ with an implantation en-
ergy of 5 keV (black), 11 keV (blue),
and 15 keV (red) comes to rest at a cer-
tain depth near the surface.

LaAlO3|LaNiO3 SLs using the Monte Carlo algorithm TRIM.SP (S30, S31) .

In our study we found that varying the stopping distribution of μ+ on the scale of about

50-800 Å through the control of the implantation energy between 5-15 keV had no effect on

the μSR spectra. The experimental LE-μSR curves in Figs. 3A to 3D were measured with

muons of energy 10 keV, which are implanted at a mean depth of 45 nm. The initial asymmetry,
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Figure S10: Zero-field μSR function observed in the N = 2 SL on LaSrAlO4 at 5 K. The solid
lines represent the best-fit curves for (A) the two-component model function described in the
manuscript and (B) Eq.(4), respectively.

A(0) ≈ 0.18, is smaller than the asymmetry of the LE-μSR setup of ≈ 0.27, because only 2/3

of the muon beam with a diameter of about 2 cm hit the sample with an area of 1 × 2 cm2. The

sample was surrounded by a Ni-coated sample holder, which causes a very fast depolarization

(< 0.06 μs) of muons missing the sample.

The obtained spectra μSR spectra yield the probability distribution of the local magnetic

field at the muon sites. As a local probe, μSR does not allow definite conclusions about the

magnetic ordering pattern in the N = 2 SLs. However, we rule out ferromagnetism based

on an estimate of the ordered moment on the Ni sites from the μSR lineshape, μNi � 0.5μB

(see the main text of the manuscript). If these moment were co-aligned in the ordered state,

the corresponding total moment M = μNinNiVSL � 7.7 × 10−4 emu would have been readily

detected in magnetization measurements. The absence of such an effect, which we confirmed

in magnetometric measurements with sensitivity ∼ 10−7 emu.

We can also rule out a spin-glass state as the ground state of N = 2 SLs, bearing in mind

that oxygen deficient LaNiO2.75 exhibits spin-glass like behavior at low temperatures (S15). A

spin-glass state develops gradually due to randomly fluctuating local moments. In this case,

the spin relaxation function should be exponential with a unique rate already at temperatures
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above about four times the actual glass transition temperature, ∼ 80 - 100 K (S32), which is at

variance with the sharp temperature onset of the local moment observed in our data (Fig. 3A

and solid squares in Fig. 4 of the manuscript). A similarly sharp transition was very recently

observed by x-ray magnetic circular dichroism (XMCD) measurements in a magnetic field of

5T on a sample with N = 2 grown under the same conditions (S33).

Additional evidence against a spin glass state can be derived from an analysis of the muon

relaxation function. At low temperature, the spin-glass relaxation function in zero field can be

described by (S34)

A(t) = A0[
1

3
exp(−

√
λdt) +

2

3
(1 − σ2t2√

λdt + σ2t2
) exp(−

√
λdt + σ2t2] (4)

with σ ≡ √
qσs and λd ≡ 4σ2

s(1 − q)/ν, where q is the Edwards-Anderson order parameter

with the purely static and dynamic limits, q = 1 and q = 0, respectively, σs is the static width

of local fields at the muon site, and ν is the rate of the randomly fluctuating moments. This

form of the relaxation function is expected for μ+ in coexisting static and dynamic random

local fields. The fit of Eq. (4) to the time evolution of the zero-field muon spin polarization for

the N = 2 SL on LaSrAlO4 at 5 K (Fig. S10) gives reasonable parameters, i.e. close to the

static limit with q ≈ 0.993, σs = 11 − 15 μs−1, and ν ≈ 2 μs−1. Nevertheless, the simpler

two-component model function, as described in the manuscript, provides a better fit to the data

below 0.2 μs than the spin-glass function of Eq. (2). The analysis is consistent with long-range

static antiferromagnetic order and confirms the conclusion of our manuscript.
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