780 research outputs found

    Isochronal annealing effects on local structure, crystalline fraction, and undamaged region size of radiation damage in Ga-stabilized δ\delta-Pu

    Full text link
    The effects on the local structure due to self-irradiation damage of Ga stabilized δ\delta-Pu stored at cryogenic temperatures have been examined using extended x-ray absorption fine structure (EXAFS) experiments. Extensive damage, seen as a loss of local order, was evident after 72 days of storage below 15 K. The effect was observed from both the Pu and Ga sites, although less pronounced around Ga. Isochronal annealing was performed on this sample to study the annealing processes that occur between cryogenic and room temperature storage conditions, where damage is mostly reversed. Damage fractions at various points along the annealing curve have been determined using an amplitude-ratio method, standard EXAFS fitting, and a spherical crystallite model, and provide information complementary to previous electrical resistivity- and susceptibility-based isochronal annealing studies. The use of a spherical crystallite model accounts for the changes in EXAFS spectra using just two parameters, namely, the crystalline fraction and the particle radius. Together, these results are discussed in terms of changes to the local structure around Ga and Pu throughout the annealing process and highlight the unusual role of Ga in the behavior of the lowest temperature anneals.Comment: 13 pages, 10 figure

    Reaction physics and mission capabilities of the magnetically insulated inertial confinement fusion reactor

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76048/1/AIAA-25451-882.pd

    Antimatter-driven fusion propulsion scheme for solar system exploration

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76531/1/AIAA-23527-891.pd

    A new Late Pliocene large provannid gastropod associated with hydrothermal venting at Kane Megamullion, Mid-Atlantic Ridge

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in Journal of Systematic Palaeontology 10 (2012): 423-433, doi:10.1080/14772019.2011.607193.A new gastropod, Kaneconcha knorri gen et sp. nov., was found in marlstone dredged from the surface of Adam Dome at Kane Megamullion on the flank of the Mid-Atlantic Ridge in an area of former hydrothermal activity. The snail is interpreted as a large provannid similar to the chemosymbiotic genera Ifremeria and Alviniconcha. This is the first record of presumably chemosymbiotic provannids from the Atlantic Ocean and also the first fossil record of such large provannids associated with hydrothermal venting. Extant Alviniconcha and Ifremeria are endemic to hydrothermal vents in the Pacific and Indian oceans. Kaneconcha differs from Ifremeria in having no umbilicus and a posterior notch, and it differs from Alviniconcha in having the profile of the whorl slightly flattened and having no callus on the inner lip. A dark layer covering the Kaneconcha shell is interpreted here as a fossilized periostracum. The shell/periostracum interface shows fungal traces attributed to the ichnospecies Saccomorpha clava. We hypothesize that large chemosymbiotic provannids (i.e., Kaneconcha, Ifremeria, and Alviniconcha) form a clade that possibly diverged from remaining provannids in the Late Jurassic, with the Late Jurassic/Early Cretaceous Paskentana being an early member.R/V Knorr Cruise 180- 2 to Kane Megamullion was supported by National Science Foundation grant OCE- 0118445. A. Kaim acknowledges support from the Alexander von Humboldt Foundation. B. Tucholke acknowledges support from an Andrew W. Mellon Foundation Award for Innovative Research and from the Deep Ocean Exploration Institute at Woods Hole Oceanographic Institution

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    Dihadron azimuthal correlations containing a high transverse momentum (\pt) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to \pp\ and \dAu\ collisions. The modification increases with the collision centrality, suggesting a path-length dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of the trigger particle's azimuthal angle relative to the event plane, \phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of both the trigger and associated particle \pt. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (\zyam), are described. The away-side correlation is strongly modified, and the modification varies with \phis, which is expected to be related to the path-length that the away-side parton traverses. The pseudo-rapidity (\deta) dependence of the near-side correlation, sensitive to long range \deta correlations (the ridge), is also investigated. The ridge and jet-like components of the near-side correlation are studied as a function of \phis. The ridge appears to drop with increasing \phis while the jet-like component remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table

    Measurements of D0D^{0} and DD^{*} Production in pp + pp Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We report measurements of charmed-hadron (D0D^{0}, DD^{*}) production cross sections at mid-rapidity in pp + pp collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays D0Kπ+D^{0}\rightarrow K^{-}\pi^{+}, D+D0π+Kπ+π+D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+} and their charge conjugates, covering the pTp_T range of 0.6-2.0 GeV/cc and 2.0-6.0 GeV/cc for D0D^{0} and D+D^{*+}, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is dσ/dyy=0ccˉd\sigma/dy|_{y=0}^{c\bar{c}} = 170 ±\pm 45 (stat.) 59+38^{+38}_{-59} (sys.) μ\mub. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.

    Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV Au+Au Collisions

    Get PDF
    A data-driven method was applied to measurements of Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance Δη\Delta\eta-dependent and Δη\Delta\eta-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is Δη\Delta\eta-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η\eta within the measured range of pseudorapidity η<1|\eta|<1. The relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.)34\% \pm 2\% (stat.) \pm 3\% (sys.) for particles of transverse momentum pTp_{T} less than 22 GeV/cc. The Δη\Delta\eta-dependent part may be attributed to nonflow correlations, and is found to be 5%±2%(sys.)5\% \pm 2\% (sys.) relative to the flow of the measured second harmonic cumulant at Δη>0.7|\Delta\eta| > 0.7
    corecore