218 research outputs found

    Characterization of human papillomavirus (HPV) type 16 capsid-cell interactions during viral cell entry

    No full text

    Studies of Myelin Basic Protein (MBP) using Electron Paramagnetic Resonance (EPR) Spectroscopy

    No full text

    Three-body Faddeev Calculation for 11Li with Separable Potentials

    Get PDF
    The halo nucleus 11^{11}Li is treated as a three-body system consisting of an inert core of 9^{9}Li plus two valence neutrons. The Faddeev equations are solved using separable potentials to describe the two-body interactions, corresponding in the n-9^{9}Li subsystem to a p1/2_{1/2} resonance plus a virtual s-wave state. The experimental 11^{11}Li energy is taken as input and the 9^{9}Li transverse momentum distribution in 11^{11}Li is studied.Comment: 6 pages, RevTeX, 1 figur

    Impacts of existing and planned hydropower dams on river fragmentation in the Balkan Region

    Get PDF
    The Balkan region has some of the best conserved rivers in Europe, but is also the location of ~3000 planned hydropower dams that are expected to help decarbonise energy production. A conflict between policies that promote renewable hydropower and those that prioritise river conservation has ensued, which can only be resolved with the help of reliable information. Using ground-truthed barrier data, we analysed the extent of current longitudinal river fragmentation in the Balkan region and simulated nine dam construction scenarios that varied depending on the number, location and size of the planned dams. Balkan rivers are currently fragmented by 83,017 barriers and have an average barrier density of 0.33 barriers/km after correcting for barrier underreporting; this is 2.2 times lower than the mean barrier density found across Europe and serves to highlight the relatively unfragmented nature of these rivers. However, our analysis shows that all simulated dam construction scenarios would result in a significant loss of connectivity compared to existing conditions. The largest loss of connectivity (−47 %), measured as reduction in barrier-free length, would occur if all planned dams were built, 20 % of which would impact on protected areas. The smallest loss of connectivity (−8 %) would result if only large dams (>10 MW) were built. In contrast, building only small dams (<10 MW) would cause a 45 % loss of connectivity while only contributing 32 % to future hydropower capacity. Hence, the construction of many small hydropower plants will cause a disproportionately large increase in fragmentation that will not be accompanied by a corresponding increase in hydropower. At present, hydropower development in the Balkan rivers does not require Strategic Environmental Assessment, and does not consider cumulative impacts. We encourage planners and policy makers to explicitly consider trade-offs between gains in hydropower and losses in river connectivity at the river basin scale.Impacts of existing and planned hydropower dams on river fragmentation in the Balkan RegionpublishedVersio

    Towards understanding structure of the monopole clusters

    Get PDF
    We consider geometrical characteristics of monopole clusters of the lattice SU(2) gluodynamics. We argue that the polymer approach to the field theory is an adequate means to describe the monopole clusters. Both finite-size and the infinite, or percolating clusters are considered. We find out that the percolation theory allows to reproduce the observed distribution of the finite-size clusters in their length and radius. Geometrical characteristics of the percolating cluster reflect, in turn, the basic properties of the ground state of a system with a gap.Comment: 20 pages, RevTeX

    A multi-scale hierarchical framework for developing understanding of river behaviour to support river management

    Get PDF
    The work leading to this paper was funded through the European Union’s FP7 programme under Grant Agreement No. 282656 (REFORM). The framework methodology was developed within the context of Deliverable D2.1 of the REFORM programme, and all partners who contributed to the development of the four parts of this deliverable are included in the author list of this paper. More details on the REFORM framework can be obtained from part 1 of Deliverable D2.1 (Gurnell et al. 2014), which is downloadable from http://​www.​reformrivers.​eu/​results/​deliverables

    EMImCl-AlCl 3

    Get PDF
    This work studied the electro-polymerisation of 3,4-ethylenedioxythiophene (EDOT) and its electrochemical behavior in Lewis acidic, neutral and basic chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride aluminum chloride (EMImCl-AlCl3) by cyclic voltammetry. It was found that the electro-polymerisation on vitreous carbon only occurs in Lewis neutral EMImCl-AlCl3 as a dark blue-violet film whereas the electro-polymerisation in a Lewis acidic or basic compositions is not possible due to the interactions between the conductive polymer and the ionic liquid as well as the potential stability limits of the electrolyte. PEDOT films synthesised in Lewis neutral ionic liquid were tested in monomer-free Lewis acidic, basic and neutral EMImCl-AlCl3 and show different doping and de-doping behavior for chloride ionic species. The PEDOT films in a Lewis neutral composition showed higher doping levels due to the higher potential stability window, up to 2.6 V vs. Al|Al(III) than in a Lewis acidic and basic solutions. Furthermore, it was shown that the doping and de-doping levels are predefined during the electro-polymerisation of PEDOT. The anion doping and de-doping reaction reached 97% reversibility in the neutral composition, which suggests that PEDOT is a suitable electrode material to store charged species in this media and could be used in rechargeable energy storage devices

    Diet-Induced Obesity Impairs Endothelium-Derived Hyperpolarization via Altered Potassium Channel Signaling Mechanisms

    Get PDF
    BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO)-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH) mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th) order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat) over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat). Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca)/IK(Ca)) inhibition; with such activity being impaired in obesity. SK(Ca)-IK(Ca) activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) and 1-ethyl-2-benzimidazolinone (1-EBIO), respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca)-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca) distribution and elevated expression. In contrast, the SK(Ca)-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir)) and Na(+)/K(+)-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K(ir) expression and distribution. Although changes in medial properties occurred, obesity had no effect on myoendothelial gap junction density. CONCLUSION/SIGNIFICANCE: In obese rats, vasodilation to EDH is impaired due to changes in the underlying potassium channel signaling mechanisms. Whilst myoendothelial gap junction density is unchanged in arteries of obese compared to control, increased IK(Ca) and Na(+)/K(+)-ATPase, and decreased K(ir) underlie changes in the EDH mechanism
    • …
    corecore