2,626 research outputs found
An analysis of short haul air passenger demand, volume 2
Several demand models for short haul air travel are proposed and calibrated on pooled data. The models are designed to predict demand and analyze some of the motivating phenomena behind demand generation. In particular, an attempt is made to include the effects of competing modes and of alternate destinations. The results support three conclusions: (1) the auto mode is the air mode's major competitor; (2) trip time is an overriding factor in intermodal competition, with air fare at its present level appearing unimportant to the typical short haul air traveler; and (3) distance appears to underly several demand generating phenomena, and therefore, must be considered very carefully to any intercity demand model. It may be the cause of the wide range of fare elasticities reported by researchers over the past 15 years. A behavioral demand model is proposed and calibrated. It combines the travel generating effects of income and population, the effects of modal split, the sensitivity of travel to price and time, and the effect of alternative destinations satisfying the trip purpose
Morphological and molecular diversity among cassava genotypes.
The objective of this work was to characterize morphologically and molecularly the genetic diversity of cassava accessions, collected from different regions in Brazil. A descriptive analysis was made for 12 morphological traits in 419 accessions. Data was transformed into binary data for cluster analysis and analysis of molecular variance. A higher proportion of white or cream (71%) root cortex color was found, while flesh colors were predominantly white (49%) and cream (42%). Four accession groups were classified by the cluster analysis, but they were not grouped according to their origin, which indicates that diversity is not structured in space. The variation was greater within regions (95.6%). Sixty genotypes were also evaluated using 14 polymorphic microsatellite markers. Molecular results corroborated the morphological ones, showing the same random distribution of genotypes, with no grouping according to origin. Diversity indices were high for each region, and a greater diversity was found within regions, with: a mean number of alleles per locus of 3.530; observed and expected heterozygosity of 0.499 and 0.642, respectively; and Shannon index of 1.03. The absence of spatial structure among cassava genotypes according to their origins shows the anthropic influence in the distribution and movement of germplasm, both within and among regions.Título em português: Diversidade morfológica e molecular entre genótipos de mandioca
On-line construction of position heaps
We propose a simple linear-time on-line algorithm for constructing a position
heap for a string [Ehrenfeucht et al, 2011]. Our definition of position heap
differs slightly from the one proposed in [Ehrenfeucht et al, 2011] in that it
considers the suffixes ordered from left to right. Our construction is based on
classic suffix pointers and resembles the Ukkonen's algorithm for suffix trees
[Ukkonen, 1995]. Using suffix pointers, the position heap can be extended into
the augmented position heap that allows for a linear-time string matching
algorithm [Ehrenfeucht et al, 2011].Comment: to appear in Journal of Discrete Algorithm
Composite repetition-aware data structures
In highly repetitive strings, like collections of genomes from the same
species, distinct measures of repetition all grow sublinearly in the length of
the text, and indexes targeted to such strings typically depend only on one of
these measures. We describe two data structures whose size depends on multiple
measures of repetition at once, and that provide competitive tradeoffs between
the time for counting and reporting all the exact occurrences of a pattern, and
the space taken by the structure. The key component of our constructions is the
run-length encoded BWT (RLBWT), which takes space proportional to the number of
BWT runs: rather than augmenting RLBWT with suffix array samples, we combine it
with data structures from LZ77 indexes, which take space proportional to the
number of LZ77 factors, and with the compact directed acyclic word graph
(CDAWG), which takes space proportional to the number of extensions of maximal
repeats. The combination of CDAWG and RLBWT enables also a new representation
of the suffix tree, whose size depends again on the number of extensions of
maximal repeats, and that is powerful enough to support matching statistics and
constant-space traversal.Comment: (the name of the third co-author was inadvertently omitted from
previous version
Determining Principal Component Cardinality through the Principle of Minimum Description Length
PCA (Principal Component Analysis) and its variants areubiquitous techniques
for matrix dimension reduction and reduced-dimensionlatent-factor extraction.
One significant challenge in using PCA, is thechoice of the number of principal
components. The information-theoreticMDL (Minimum Description Length) principle
gives objective compression-based criteria for model selection, but it is
difficult to analytically applyits modern definition - NML (Normalized Maximum
Likelihood) - to theproblem of PCA. This work shows a general reduction of NML
prob-lems to lower-dimension problems. Applying this reduction, it boundsthe
NML of PCA, by terms of the NML of linear regression, which areknown.Comment: LOD 201
Fast Label Extraction in the CDAWG
The compact directed acyclic word graph (CDAWG) of a string of length
takes space proportional just to the number of right extensions of the
maximal repeats of , and it is thus an appealing index for highly repetitive
datasets, like collections of genomes from similar species, in which grows
significantly more slowly than . We reduce from to
the time needed to count the number of occurrences of a pattern of
length , using an existing data structure that takes an amount of space
proportional to the size of the CDAWG. This implies a reduction from
to in the time needed to
locate all the occurrences of the pattern. We also reduce from
to the time needed to read the characters of the
label of an edge of the suffix tree of , and we reduce from
to the time needed to compute the matching
statistics between a query of length and , using an existing
representation of the suffix tree based on the CDAWG. All such improvements
derive from extracting the label of a vertex or of an arc of the CDAWG using a
straight-line program induced by the reversed CDAWG.Comment: 16 pages, 1 figure. In proceedings of the 24th International
Symposium on String Processing and Information Retrieval (SPIRE 2017). arXiv
admin note: text overlap with arXiv:1705.0864
The purpose of mess in action research: building rigour though a messy turn
Mess and rigour might appear to be strange bedfellows. This paper argues that the purpose of mess is to facilitate a turn towards new constructions of knowing that lead to transformation in practice (an action turn). Engaging in action research - research that can disturb both individual and communally held notions of knowledge for practice - will be messy. Investigations into the 'messy area', the interface between the known and the nearly known, between knowledge in use and tacit knowledge as yet to be useful, reveal the 'messy area' as a vital element for seeing, disrupting, analysing, learning, knowing and changing. It is the place where long-held views shaped by professional knowledge, practical judgement, experience and intuition are seen through other lenses. It is here that reframing takes place and new knowing, which has both theoretical and practical significance, arises: a 'messy turn' takes place
- …
