
Composite repetition-aware data structures

Djamal Belazzougui1,2, Fabio Cunial1,2, Travis Gagie1,2, Nicola Prezza3, and Mathieu
Raffinot4

1Department of Computer Science, University of Helsinki, Finland.∗
2Helsinki Institute for Information Technology, Finland.

3Department of Mathematics and Computer Science, University of Udine, Italy.
4LIAFA, Paris Diderot University - Paris 7, France.

October 9, 2018

Abstract

In highly repetitive strings, like collections of genomes from the same species, distinct measures of
repetition all grow sublinearly in the length of the text, and indexes targeted to such strings typically
depend only on one of these measures. We describe two data structures whose size depends on multiple
measures of repetition at once, and that provide competitive tradeoffs between the time for counting and
reporting all the exact occurrences of a pattern, and the space taken by the structure. The key component
of our constructions is the run-length encoded BWT (RLBWT), which takes space proportional to
the number of BWT runs: rather than augmenting RLBWT with suffix array samples, we combine it
with data structures from LZ77 indexes, which take space proportional to the number of LZ77 factors,
and with the compact directed acyclic word graph (CDAWG), which takes space proportional to the
number of extensions of maximal repeats. The combination of CDAWG and RLBWT enables also a
new representation of the suffix tree, whose size depends again on the number of extensions of maximal
repeats, and that is powerful enough to support matching statistics and constant-space traversal.

1 Introduction

The space taken by compressed data structures for highly-repetitive strings is typically a function of a specific
measure of repetition, for example the number z of factors in a Lempel-Ziv parsing [1, 11], or the number
r of runs in a Burrows-Wheeler transform [14]. For many such compressed data structures, computing all
the occurrences of a pattern in the indexed string is a bottleneck. In this paper we explore the advantages
of combining data structures that depend on distinct measures of repetition. Specifically, we describe a data
structure that takes approximately O(z+r) words of space, and that reports all the occurrences of a pattern
of length m in O(m(log log n+ log z) + pocc logε z + socc log log n) time, where n is the length of the string
and pocc and socc are the number of primary and of secondary occurrences, respectively (see Section 2.2 for
definitions). This compares favorably to the O(m2h+ (m+ occ) log z) reporting time of LZ77 indexes [11],
where h is the height of the parse tree. It also compares favorably in space to solutions based on run-length
encoded BWT (RLBWT) and suffix array samples [14], which take O(n/k + r) words of space to achieve
O(m log log n+ k · occ log log n) reporting time, where k is a sampling rate.

We also introduce a new measure of the repetitiveness of a string, the number e of right extensions
of maximal repeats, which is related to the number of arcs in the compact directed acyclic word-graph

∗This work was partially supported by Academy of Finland under grant 250345 (Center of Excellence in Cancer Genetics
Research).

1

ar
X

iv
:1

50
2.

05
93

7v
2

 [
cs

.D
S]

 2
3

Fe
b

20
15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- LUISS Libera Università Internazionale degli Studi Sociali Guido Carli...

https://core.ac.uk/display/288645370?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Growth of the number of maximal repeats |MT | (black circles), of |ErT ∪FrT | (white circles, e in the
introduction), of the number of runs in BWT |RT | (squares, r in the introduction), and of |ZT | (triangles,
z in the introduction) in a concatenation T of 39 highly similar Saccharomyces cerevisiae genomes [8] (see
Section 2 for definitions). Left: growth inside the first genome of the database. Center: growth after the
addition of each genome (one sample per genome). Right: the same as the plot in the center, but with each
curve normalized by its first sample. |E`T ∪F`T |, |RT | and |ZT | are not shown since they behave approximately
as their symmetrical counterparts.

(CDAWG) and which is an upper bound on r and z. We show a data structure whose size depends on e and
that reports all the occ occurrences of a pattern of length m in a string of length n in O(m log log n+ occ)
time. The main component of our constructions is the RLBWT, which we use to count the number of
occurrences of a pattern, and which we combine with the CDAWG and with data structures from LZ
indexes, rather than with suffix array samples, for reporting. Similar combinations have already appeared
in the literature, but their space has been related to statistical compressibility rather than to the number
of repetitions: for example, an FM-index has already been combined with an LZ78 self-index to achieve
faster search or reporting [1, 7], but the size of the resulting data structure depends on k-th order empirical
entropy.

Combining the RLBWT with the CDAWG enables also a new representation of the suffix tree, which
takes space proportional to e+ e` (where e` is the number of left extensions of maximal repeats) and which
supports a number of operations in O(log log n) time. Among other properties, this new representation
allows computing the matching statistics of a pattern of length m in O(m log log n) time. Our constructions
are targeted to highly-repetitive strings, like large databases of similar genomes, in which all the measures
of repetition on which our data structures depend grow sublinearly in the size of the database (see Figure 1
for an example).

2 Preliminaries

Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let T = [1..σ]n−1# be a string. We
denote the reverse of T by T . Given a substring W of T , let PT (W) be the set of all starting positions of W
in the circular version of T . A repeat W is a string that satisfies |PT (W)| > 1. We denote by Σ`T (W) the set
of characters {a ∈ [0..σ] : |PT (aW)| > 0} and by ΣrT (W) the set of characters {b ∈ [0..σ] : |PT (Wb)| > 0}.
A repeat W is right-maximal (respectively, left-maximal) iff |Σ`T (W)| > 1 (respectively, iff |ΣrT (W)| > 1).
It is well known that T can have at most n − 1 right-maximal substrings and at most n − 1 left-maximal
substrings. A maximal repeat of T is a repeat that is both left- and right-maximal: we call MT the set of
all maximal repeats of T . A maximal repeat W can be seen as a set of right-maximal substrings of T , and
specifically as the set of all right-maximal strings W [i..|W |] for i ∈ [1..k] that are not left-maximal, and such
that W [k + 1..|W |] is left-maximal.

For reasons of space we assume the reader to be familiar with the notion of suffix tree STT = (V,E) of T ,

2

which we do not define here. We denote by `(γ), or equivalently by `(u, v), the label of edge γ = (u, v) ∈ E,
and we denote by `(v) the string label of node v ∈ V . It is well known that a substring W of T is
right-maximal (respectively, left-maximal) iff W = `(v) for some internal node v of STT (respectively, iff
W = `(v) for some internal node v of STT). We assume the reader to be familiar with the notion of suffix
link connecting a node v with `(v) = aW for some a ∈ [0..σ] to a node w with `(w) = W : we say that
w = suffixLink(v) in this case. Here we just recall that inverting the direction of all suffix links yields
the so-called explicit Weiner links. Given an internal node v and a symbol a ∈ [0..σ], it might happen that
string a`(v) does occur in T , but that it is not right-maximal, i.e. it is not the label of any internal node: all
such left extensions of internal nodes that end in the middle of an edge are called implicit Weiner links. An
internal node can have more than one outgoing Weiner link, and all such Weiner links have distinct labels.

The compact directed acyclic word graph of a string T (denoted by CDAWGT in what follows) is the
minimal compact automaton representing the set of suffixes of a given string [3, 6]. It can be seen as the
minimization of STT , in which all leaves are merged to the same node (the sink) that represents T itself,
and in which all nodes except the sink are in one-to-one correspondence with the maximal repeats of T [16].
Since a maximal repeat corresponds to a set of right-maximal substrings, CDAWGT can be built by putting in
the same equivalence class all nodes of STT that belong to the same maximal unary path of explicit Weiner
links.

For reasons of space we assume the reader to be familiar with the notion and uses of the Burrows-Wheeler
transform of T , including the C array and backward searching. In this paper we use BWTT to denote the
BWT of T , and we use range(W) = [sp(W)..ep(W)] to denote the lexicographic interval of a string W in
a BWT that is implicit from the context. We say that BWTT [i..j] is a run iff BWTT [k] = c ∈ [0..σ] for all
k ∈ [i..j], and moreover if any substring BWTT [i′..j′] such that i′ ≤ i, j′ ≥ j, and either i′ 6= i or j′ 6= j,
contains at least two distinct characters. It is well known that repetitions in T tend to be converted into
runs of BWTT . We denote by RT the set of all triplets (c, i, j) such that BWTT [i..j] is a run of character c,
and we use rT and rT as shorthands for |RT | and |RT |, respectively.

The LZ77 factorization of T [20] is the greedy decomposition T1T2 · · ·Tz of T obtained as follows. Assume
that T is virtually preceded by the σ distinct characters in its alphabet, and assume that T1T2 · · ·Ti has
already been computed for some prefix of length k of T : then, Ti+1 is the longest prefix of T [k + 1..n] such
that there is a j ≤ k that satisfies T [j..j + |Ti+1| − 1] = Ti+1. We denote by ZT the set of pairs (Ti, pi) for
all i ∈ [1..z], where pi is the starting position of Ti in T , and we use zT as a shorthand for |ZT |. From now
on, we drop subscripts whenever the string T they specify is clear from the context.

2.1 Relationships among maximal repeats, runs in BWT, and LZ factors

Clearly |R| can be as small as two, e.g. in string 0n−1#, and as large as Θ(n), e.g. in the string of length
n that contains exactly n distinct characters, or in a de Bruijn string of order k > 1 on a binary alphabet:
this string of length σk + k − 1 contains all the distinct k-mers, thus the interval of every (k − 1)-mer in
BWTT contains exactly σ distinct characters, and the number of runs in BWTT is thus at least σk−1(k− 1).
It is known that |Z| is O(n/ logσ n) [12], and it can be constant, e.g. in 0n−1#. Conversely, |M| can be
zero, e.g. in a string of length n that contains exactly n distinct characters, and it can be Θ(n) in the
worst case, e.g. in string 0n−1#. When maximal repeats exist, the number of right extensions of maximal
repeats

∑
W∈M |Σr(W)| is Ω(log n) (see Lemma 4 in the appendix), and this lower bound is matched by

Fibonacci strings and by Thue-Morse strings of length n, whose CDAWG contains O(log n) nodes [15, 17].
Both |M|/|R| and |M|/|Z| can be Θ(n), for example in the already mentioned 0n−1#. |R|/|Z| can be
Θ(log n), e.g. in the already mentioned de Bruijn string T of order k, which has Θ(n/ logσ n) LZ factors.
However, |M|, |R| and |Z| can all grow at the same asymptotic rate in the same family of strings. Consider
e.g. string T = 011021 · · · 0x1# of length x(x + 3)/2 + 1. Clearly |Z| = x + 3, and |M| = 3(x − 1) since
the maximal repeats of T are only the substrings 0i1 for i ∈ [1..x− 1], 0j for j ∈ [1..x− 1], and 0k−110k for
k ∈ [2..x− 1]. Replacing # with a new block 0x+11# in string T creates two new runs for every x > 1, thus
|R| = 2x for x > 1.

Recall that a substring W of T is a maximal repeat iff W = `(v) for some internal node v of STT = (V,E),
and moreover if there are at least two Weiner links from v. Since the set of all left-maximal substrings of T

3

is closed under the prefix operation, there is a bijection between M and the nodes that lie on the paths of
STT that start from the root and that end at nodes labeled by maximal repeats defined as follows:

Definition 1. A maximal repeat W of a string T ∈ [1..σ]n−1# is rightmost if no string WV with V ∈ [0..σ]+

is left-maximal in T .

We denote the set of rightmost maximal repeats of T by Mr
T . We also denote by ErT the set of edges of

STT that connect pairs of nodes labeled by maximal repeats, and we denote by FrT the set of edges (v, w)
in STT such that `(v) ∈ MT and `(w) /∈ MT . We use M`

T , E`T and F`T to denote symmetrical concepts in
STT , and we use eT and e`T as shorthands for |ErT |+ |FrT | and for |E`T |+ |F`T |, respectively. Clearly Er and
Fr are the image of explicit and implicit Weiner links of STT :

Lemma 1. Let STT = (V,E). There is a bijection between ErT and the set of all explicit Weiner links from
nodes of STT that correspond to maximal repeats of T . There is a bijection between FrT and the set of all
implicit Weiner links from nodes of STT that correspond to maximal repeats of T .

The proof of Lemma 1 is provided in the appendix. It is clear that the set of suffix tree edges ErT ∪ FrT
is in one-to-one correspondence with the set of all arcs of CDAWGT . This set of edges is also related to runs
in BWTT :

Theorem 1. |[0..σ] \ ∪W∈Mr
T

Σ`T (W)|+
∑
W∈Mr

T
|Σ`T (W)| − |Mr

T |+ 1 ≤ |RT | ≤ |FrT |.

Proof. The root of STT is a maximal repeat, thus the destinations of all edges in Fr partition all leaves of
STT into disjoint subtrees, or equivalently they partition the entire BWTT in disjoint blocks. Since every
such block is the interval in BWTT of some string that is not left-maximal, all characters of BWTT in the
same block are identical, thus the number of runs in BWTT cannot be bigger than |Fr|.

The interval of a string W ∈Mr in BWTT contains exactly |Σ`(W)| distinct characters, and at most one
of them is identical to the character that precedes the largest suffix of T smaller than W in lexicographic
order (note that such suffix might not be prefixed by any string inMr). Thus, the number of runs in BWTT
is at least

∑
W∈Mr |Σ`(W)|−|Mr|+1. Factor [0..σ]\∪W∈MrΣ`T (W) in the claim takes into account symbols

of T that never occur to the left of strings in Mr.

A symmetrical argument holds for RT . The set of arcs in CDAWGT is also related to the LZ factorization
of T :

Theorem 2. |ZT | ≤ |ErT ∪ FrT |

Proof. Let T = T1T2 . . . Tz be the LZ factorization of T , and let p1, p2, . . . , pz be the sequence such that pi is
the starting position of factor Ti in T . Every factor is a right-maximal substring of T , but it is not necessarily
left-maximal: let Wi be a suffix of T [1..pi − 1] such that WiTi is both right-maximal and left-maximal, and
assume that we assign Ti to the edge (v, w) in ErT ∪ FrT such that `(v) = WiTi, v = parent(w), and the
first character of Ti+1 equals the first character of `(v, w). Assume that there is some j > i for which we
assign Tj to the same maximal repeat WiTi. Then, the first character of Tj+1 must be different from the
first character of Ti+1, otherwise factor Tj would have been longer. It follows that every LZ factor can be
assigned to a distinct element of ErT ∪ FrT .

The gap between r and e, and between z and e, is apparent from Figure 1 (center). However, all these
measures seem to grow at the same relative rate in practice (right panel).

2.2 Repetition-aware data structures

Given a string T ∈ [1..σ]n−1#, we call run-length encoded BWT any representation of BWTT that takes
O(|RT |) words of space, and that supports rank and select operations: see for example [13, 14, 18]. Let
RT be a set of triplets (c, i, j) such that BWTT [i..j] is a run of character c. It is easy to implement rank in
O(log log n) time, by encoding RT as σ+ 1 predecessor data structures [19], each of which stores the second

4

component of all triplets with the same first component. For every such second component i, we also store
in an array the sum of all occurrences of c up to i, exclusive. To implement select in O(log log n) time, we
can similarly encode RT as σ+ 1 predecessor data structures, each of which stores value rankc(BWTT , i−1)
for all triplets (c, i, j) with the same value of c. We also store the value of i for every such triplet. We denote
the run-length encoded BWT of T by RLBWTT .

For reasons of space we assume the reader to be familiar with LZ77-indexes: see e.g. [10, 9]. Here
we just recall that a primary occurrence of a pattern P in a string T ∈ [1..σ]n−1# is one that crosses
or ends at a phrase boundary in the LZ77 factorization T1T2 · · ·Tz of T . All other occurrences are called
secondary. Once we have determined all primary occurrences, locating secondary occurrences reduces to
two-sided range reporting and takes O(occ log log n) time with a data structure that takes O(z) words of
space [10]. To locate primary occurrences, we can use a data structure for four-sided range reporting on a
z × z grid, with a marker at (x, y) if the xth LZ factor in lexicographic order is preceded in the text by the
lexicographically yth reversed prefix ending at a phrase boundary. This data structure takes O(z) words of
space, and it returns all the phrase boundaries immediately followed by a factor in the specified range, and
immediately preceded by a reversed prefix in the specified range, in O((1 + k) logε z) time, where k is the
number of phrase boundaries reported [4].

3 Combining runs in BWT and LZ factors

In this section we describe how to combine data structures whose size depends on the number of LZ factors
of a string T ∈ [1..σ]n−1#, and data structures whose size depends on the number of runs in BWTT , to
report all the occurrences of a pattern in T . To do so, we first need to solve the following subproblem. Let
STT = (V,E) be the suffix tree of T , and let V ′ = {v1, v2, . . . , vk} ⊆ V be a subset of the nodes of STT .
Consider the list of node labels L = `(v1), `(v2), . . . , `(vk), sorted in lexicographic order. Given a string
W ∈ [0..σ]∗, we want to implement function I(W,V ′) that returns the (possibly empty) interval of W in L.
The following lemma describes how to do this in O(k) words of space:

Lemma 2. Let T ∈ [1..σ]n−1# be a string, and let V ′ be a subset of k nodes of its suffix tree, represented
as intervals in BWTT . Given the interval [i..j] of a string W ∈ [0..σ]∗ in BWTT , there is a data structure
that takes O(k) words of space and that computes I(W,V ′) in O(log k) time.

Proof. We store a bitvector first[1..n] such that first[i] = 1 iff there is a node v′ ∈ V ′ such that
range(v′) = [i..j]. Similarly, we store a bitvector last[1..n] such that last[j] = 1 iff there is a node
v′ ∈ V ′ such that range(v′) = [i..j]. Let α and β be the number of ones in first and last, respectively.
We build prefix-sum arrays First and Last on such bitvectors using O(k) words of space, and we discard
first and last. Let F [1..α] be the array such that F [i] equals the number of intervals [p..q] such that p is
the ith one in first and [p..q] = range(v′) for a node v′ ∈ V ′. Similarly, let L[1..β] be the array such that
L[i] equals the number of intervals [p..q] such that q is the ith one in last and [p..q] = range(v′) for a node
v′ ∈ V ′. We represent F and L as prefix-sum arrays using O(k) words of space, and we discard F and L.

Let I(W,V ′) = [x..y]. Given the interval [i..j] of a string W in BWTT , we find the corresponding interval
[i′..j′] in array first in O(logα) time, using binary search on First. Specifically, i′ = min{p ∈ [1..α] :
First[p] ≥ i} and j′ = max{q ∈ [1..α] : First[q] ≤ j}. If j′ < i′ then W is not the prefix of a label of a node
in V ′. Otherwise, since all nodes v′ ∈ V ′ whose BWT interval starts inside [i+ 1..j] are right extensions of

W , we set y =
∑j′

p=1 F [p] in constant time using the prefix-sum representation of F . If First[i′] 6= i, i.e. if

no interval of a node v′ ∈ V ′ starts at position i in BWTT , then we can just set x = 1 +
∑i′−1
p=1 F [p] and stop.

Otherwise, it could happen that just a (possibly empty) subset of all the nodes in V ′ whose interval starts
at position i in BWTT correspond to W or to right extensions of W : the intervals of such nodes necessarily
end inside [i..j]. All the other intervals that start at position i could correspond instead to prefixes of W ,
and they necessarily end after position j in BWTT . Thus, let [i′′..j′′] be the interval in last that corresponds
to [i..j]: specifically, let i′′ = min{p ∈ [1..β] : Last[p] ≥ i} and j′′ = max{q ∈ [1..β] : Last[q] ≤ j}. To
determine the number of intervals that start at position i in BWTT and that correspond to prefixes of W ,

5

it suffices to compute the difference δ between the number of starting positions and the number of ending

positions inside interval [i..j], as follows: δ =
(∑j′

p=1 F [p]−
∑i′−1
p=1 F [p]

)
−
(∑j′′

q=1 L[q]−
∑i′′−1
q=1 L[q]

)
. Then,

x =
∑i′

p=1 F [p] − δ. All such sums can be computed in constant time using the prefix-sum representations
of F ad L.

Consider now a factorization of T such that all factors are right-maximal substrings of T , and let V ′ be
the set of nodes of STT that correspond to the distinct factors. To locate all the occurrences of a pattern
that cross or end at a boundary between two factors, we just need an implementation of function I(W,V ′)
and a pair of RLBWTs:

Lemma 3. Let T ∈ [1..σ]n−1# be a string, and let T = T1T2 · · ·Tz be a factorization of T in which all
factors are right-maximal substrings. There is a data structure that takes O(z+ rT + rT) words of space and
that reports all the occ occurrences of a pattern P ∈ [0..σ]m that cross or end at a boundary between two
factors of T , in O(m(log log n+ log z) + occ logε z) time.

Proof. Let p1, p2, . . . , pz be the sequence such that pi is the starting position of factor Ti in T . The same
occurrence of P in T can cover up to m boundaries between two factors, thus we organize the computation
as follows. We consider every possible way to place the rightmost boundary between two factors in P , i.e.
every possible split of P into two parts P [1..k − 1] and P [k..m] for k ∈ [1..m], such that P [k..m] is either a
factor or a proper prefix of a factor. For every such k, we use four-sided range reporting queries to list all the
occurrences of P in T that conform to this split, as described in Section 2.2. The four-sided range reporting
data structure represents the mapping between the lexicographic rank of a factor W among all the distinct
factors of T , and the lexicographic ranks of all the reversed prefixes T [1..pi − 1] such that Ti = W , among
all the reversed prefixes of T that end at the last position of a factor. As described in Section 2.2, this data
structure takes O(z) words of space.

We encode sequence p1, p2, . . . , pz implicitly, as follows: we use a bitvector last[1..n] such that last[i] = 1
iff SAT [i] = n − pj + 2 for some j ∈ [1..z], i.e. iff SAT [i] is the last position of a factor. We represent such
bitvector as a predecessor data structure with partial ranks, using O(z) words of space [19]. Then, we build
the data structure described in Lemma 2, where V ′ is the set of loci in STT of all factors of T . This data
structure takes O(z) words of space, and together with last, RLBWTT and RLBWTT , it is the output of
our construction.

Given a pattern P ∈ [0..σ]m, we first perform a backward search in RLBWTT to determine the number
of occurrences of P in T : if this number is zero, we stop. During this backward search, we store in a table
the interval [ik..jk] of P [k..m] in BWTT for every k ∈ [2..m]. Then, we compute the interval [i′k−1..j

′
k−1]

of P [1..k − 1] in BWTT for every k ∈ [2..m], using backward search in RLBWTT : if rank1(last, j′k−1) −
rank1(last, i′k−1 − 1) = 0, then P [1..k − 1] never ends at the last position of a factor, and we can discard
this value of k. Otherwise, we convert [i′k−1..j

′
k−1] to the interval [rank1(last, i′k−1) + 1..rank1(last, j′k−1)]

of all the reversed prefixes of T that end at the last position of a factor. Rank operations on last can be
implemented in O(log log n) time using predecessor queries. We get the lexicographic interval of P [k..m] in
the list of all the distinct factors of T using operation I(P [k..m], V ′), in O(log z) time. We use such intervals
to query the four-sided range reporting data structure.

The algorithm described in Lemma 3 can be engineered in a number of ways in practice. Here we just
apply it to the LZ factorization of T to find all the primary occurrences of P in T , and we use the strategy
described in Section 2.2 to compute secondary occurrences, obtaining the key result of this section:

Theorem 3. Let T ∈ [1..σ]n−1# be a string, and let T = T1T2 . . . Tz be its LZ factorization. There is a data
structure that takes O(z+rT+rT) words of space and that reports all the pocc primary occurrences and all the
socc secondary occurrences of a pattern P ∈ [0..σ]m in O(m(log log n+ log z) + pocc logε z + socc log log n)
time.

6

4 Combining runs in BWT and maximal repeats

An alternative way to compute all the occurrences of a pattern in a string T consists in combining RLBWTT
with CDAWGT , using an amount of space proportional to the number of right extensions of the maximal
repeats of T :

Theorem 4. Let T ∈ [1..σ]n−1# be a string. There is a data structure that takes O(eT) words of space
(or alternatively, O(e`T) words of space) and that reports all the occ occurrences of a pattern P ∈ [0..σ]m in
O(m log log n+ occ) time.

Proof. We build RLBWTT and CDAWGT . For every node v in the CDAWG, we store |`(v)| in a variable
v.length. Recall that an arc (v, w) of the CDAWG means that maximal repeat `(w) can be obtained by
extending maximal repeat `(v) to the right and to the left. Thus, for every arc γ = (v, w) of CDAWGT , we
store the first character of `(γ) in a variable γ.char, and we store the length of the right extension implied
by γ in a variable γ.right. The length γ.left of the left extension implied by γ can be computed by
w.length− v.length− γ.right. Clearly arcs of CDAWGT that correspond to edges of STT in set ErT induce
no left extension. For every arc of CDAWGT that connects a maximal repeat W to the sink, we store just
γ.char and the starting position γ.pos of string W · γ.char in T . The total space used by the CDAWG
is clearly O(e) words, and by Theorem 1 the space used by RLBWTT is O(|FrT |) words. An alternative
construction could use CDAWGT and RLBWTT .

We use the RLBWT to count the number of occurrences of P in T in O(m log logn) time: if this number
is greater than zero, we use the CDAWG to report all the occ occurrences of P in T in O(occ) time, using
the technique sketched in [5]. Specifically, since we know that P occurs in T , we perform a blind search for P
in the CDAWG, as is typically done with Patricia trees. We keep a variable i, initialized to zero, that stores
the length of the prefix of P that we have matched so far, and we keep a variable j, initialized to one, that
stores the starting position of P inside the last maximal repeat encountered during the search. For every
node v in the CDAWG, we choose the arc γ such that γ.char = P [i + 1] in constant time using hashing,
we increment i by γ.right, and we increment j by γ.left. If the search leads to the sink by an arc γ, we
report γ.pos + j and we stop. If the search leads to a node v that is associated with the maximal repeat
W , we determine all the occurrences of W in T by performing a depth-first traversal of all the nodes in the
CDAWG that are reachable from v, updating variables i and j as described above, and reporting γ.pos + j
for every arc γ that leads to the sink. The total number of nodes and arcs reachable from v is clearly O(occ).

The combination of CDAWGT and RLBWTT can also be used to implement a repetition-aware represen-
tation of STT . We will apply the following property to support operations on STT :

Property 1. A maximal repeat W = [1..σ]m of T is the equivalence class of all the right-maximal strings
{W [1..m], . . . ,W [k..m]} such that W [k + 1..m] is left-maximal, and W [i..m] is not left-maximal for all
i ∈ [2..k]. Equivalently, the node v′ of CDAWGT with `(v′) = W is the equivalence class of the nodes
{v1, . . . , vk} of STT such that `(vi) = W [i..m] for all i ∈ [1..k], and such that vk, vk−1, . . . , v1 is a maximal
unary path of Weiner links.

Thus, the set of right-maximal strings that belong to the equivalence class of a maximal repeat can be
represented by a single integer k, and a right-maximal string can be identified by the maximal repeat W it
belongs to, and by the length of the corresponding suffix of W . In BWTT , the right-maximal strings in the
same equivalence class enjoy the following additional properties:

Property 2. Let {W [1..m], . . . ,W [k..m]} be the right-maximal strings that belong to the equivalence class
of maximal repeat W ∈ [1..σ]m, and let range(W [i..m]) = [pi..qi] for i ∈ [1..k]. Then:

1. |qi − pi + 1| = |qj − pj + 1| for all i and j in [1..k].

2. BWTT [pi..qi] = W [i− 1]qi−pi+1 for i ∈ [2..k]. Conversely, BWTT [p1..q1] contains at least two distinct
characters.

7

stringDepth isAncestor parent child suffixLink weinerLink edgeChar nLeaves

locateLeaf nextSibling firstChild

1 O(1) O(1) O(log log n) O(1) O(log log n) O(log log n) O(log logn) O(1)
2 O(1) O(log log n) O(1) O(1)

Table 1: Time complexities of two representations of STT : with intervals in BWTT (row 1) and without
intervals in BWTT (row 2).

3. pi−1 = C[c]+rankc(BWTT , pi) and qi−1 = pi−1 +qi−pi for i ∈ [2..k], where c = W [i−1] = BWTT [pi].

4. pi+1 = selectc(BWTT , pi − C[c]) and qi+1 = pi+1 + qi − pi for i ∈ [1..k − 1], where c = W [i] is
the character that satisfies C[c] < pi ≤ C[c + 1]. This can be computed in O(log log n) time using a
predecessor data structure that uses O(σ) words of space [19].

5. Let c ∈ [0..σ], and let range(W [i..m]c) = [xi..yi] for i ∈ [1..k]. Then, xi = pi + x1 − p1 and yi =
pi + y1 − p1.

The final property we will exploit relates the equivalence class of a maximal repeat to the equivalence
classes of its in-neighbors in the CDAWG:

Property 3. Let w be a node in CDAWGT with `(w) = W ∈ [1..σ]m, and let Sw = {W [1..m], . . . , W [k..m]}
be the right-maximal strings that belong to the equivalence class of node w. Let {v1, . . . , vt} be the in-neighbors
of w in CDAWGT , and let {V 1, . . . , V t} be their labels. Then, Sw is partitioned into t disjoint sets S1w, . . . ,Stw
such that Siw = {W [xi + 1..m],W [xi + 2..m], . . . ,W [xi + |Svi |..m]}, and the right-maximal string V i[p..|V i|]
labels the parent of the locus of the right-maximal string W [xi + p..m] in STT .

Proof. It is clear that the parent in STT of every right-maximal string in the equivalence class of node w
belongs to the equivalence class of an in-neighbor of w: we focus here just on showing that the in-neighbors
of w induce a partition on the equivalence class of w. Assume that the character that labels arc γ = (vi, w)
in the CDAWG is c. Since arc γ exists, we can factorize W as XiV iY i, where Y i[1] = c, and we know that no
prefix of V iY i longer than V i is right-maximal, and that no suffix of W longer than |V iY i| is left-maximal.
Consider any suffix V i[p..|V i|] of V i that belongs to the equivalence class of V i: if p > 1, then W [|Xi|+p..m]
is not left-maximal, thus W [|Xi|+ p..m] belongs to the equivalence class of W . Its prefix V i[p..|V i|] is right-
maximal, and no longer prefix is right-maximal. Indeed, assume that string V i[p..|V i|]Zi is right-maximal
for some prefix Zi of Y i. Since V i[p..|V i|] is not left-maximal, then string V i[p..|V i|]Zi is not left-maximal
either, and this implies that V iZi is right-maximal, contradicting the hypothesis. Thus, string V i[p..|V i|]
labels the parent of the locus of string W [|Xi| + p..m] in STT . If p = 1 and V iY i is not left-maximal, the
same argument applies. If V iY i is left-maximal, then W = V iY i, and since no right-maximal prefix of W
longer than V i exists, we have that V i labels the parent of the locus of W in STT .

Combining Properties 1, 2 and 3, we obtain the following result:

Theorem 5. Let T ∈ [1..σ]n−1# be a string. There are two implementations of STT that take O(eT + e`T)
words of space each, and that support the operations in Table 1 with the specified time complexities.

Proof. We build RLBWTT and CDAWGT , and we annotate the latter as described in Theorem 4, with the
only difference that arcs that connect a maximal repeat to the sink are annotated with character and length
like all other arcs. We store in every node v of the CDAWG the number v.size of right-maximal strings that
belong to its equivalence class, the interval [v.first..v.last] of `(v) in BWTT , a linear-space predecessor data
structure [19] on the boundaries induced on the equivalence class of v by its in-neighbors (see Observation
3), and pointers to the in-neighbor that corresponds to the interval associated with each boundary. Finally,
we add to the CDAWG all suffix links (v, w) from STT such that both v and w are maximal repeats, and
the corresponding explicit Weiner links.

We represent a node v of STT as a tuple id(v) = (v′, |`(v)|, i, j), where v′ is the node in CDAWGT that cor-
responds to the equivalence class of v, and [i..j] is the interval of `(v) in BWTT . Thus, operation stringDepth

8

can be implemented in constant time, and if v is a leaf, the second component of id(v) is its starting position
in T . Operation isAncestor can be implemented by testing the containment of the corresponding intervals
in BWTT . To implement operation suffixLink, we first check whether |`(v)| = v′.length− v′.size + 1: if
so, we take the suffix link (v′, w′) from v′ and we return (w′, w′.length, w′.first, w′.last). Otherwise, we
return (v′, |`(v)| − 1, i′, j′), where [i′..j′] is computed as described in point 4 of Property 2. To implement
weinerLink for some character c, we first check whether |`(v)| = v′.length: if so, we take the Weiner link
(v′, w′) from v′ labeled by character c (if any), and we return (w′, w′.length − w′.size + 1, i′, j′), where
[i′..j′] is computed by taking a backward step with character c from [v′.first..v′.last]. Otherwise, we check
whether BWTT [i] = c: if so, we return (v′, |`(v)|+ 1, i′, j′), where [i′..j′] is computed as described in point 3
of Property 2.

To implement child for some character c, we follow the arc γ = (v′, w′) in the CDAWG labeled by c
(see Observation 3), and we return tuple (w′, |`(v)|+ γ.right, i′, j′), where [i′..j′] is computed as described
in point 5 of Property 2. To implement parent we exploit Property 2, i.e. we determine the partition of the
equivalence class of v′ that contains v by searching the predecessor of value |`(v)| in the set of boundaries
of v′: this can be done in O(log log n) time [19]. Let γ = (u′, v′) be the arc that connects to v′ the in-
neighbor u′ associated with the partition that contains v: we return tuple (u′, |`(v)| − γ.right, i′, j′), where
i′ = i− v′.first+ u′.first and j′ = j + u′.last− v′.last as described in point 5 of Property 2. Operation
nextSibling can be implemented in the same way.

We read the label of an edge γ of STT in O(log log n) time per character (operation edgeChar), by storing
RLBWTT and the interval in BWTT of the reverse of the maximal repeat that corresponds to every node
of the CDAWG. By removing from id(v) the interval of `(v) in BWTT , we can implement stringDepth,
child, firstChild and suffixLink in constant time, and parent and nextSibling in O(log log n) time.

Corollary 1. Let T ∈ [1..σ]n−1# be a string. There is an implementation of STT that takes O(eT+e`T) words
of space, that computes the matching statistics of a pattern S ∈ [1..σ]m with respect to T in O(m log log n)
time, and that can be traversed in O(n log log n) time and in a constant number of words of space.

Proof. We combine the implementation in the first row of Table 1 with the folklore algorithm for matching
statistics, that issues suffixLink and child operations on STT , and that reads the label of some edges of
STT . For traversal, we combine the implementation in the second row of Table 1 with the folklore algorithm
that issues just firstChild, parent and nextSibling operations.

By storing RLBWTT in addition to RLBWTT , and by adding to id(v) the interval of `(v) in BWTT , we
can also implement a bidirectional index on T like those described in [2], that supports the left and right
extension of a string with any character in O(log log n) time and that takes O(e+ e`) words of space.

References

[1] Diego Arroyuelo, Gonzalo Navarro, and Kunihiko Sadakane. Stronger Lempel-Ziv based compressed
text indexing. Algorithmica, 62(1-2):54–101, 2012.

[2] Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Versatile succinct repre-
sentations of the bidirectional Burrows-Wheeler transform. In Algorithms–ESA 2013, pages 133–144.
Springer, 2013.

[3] Anselm Blumer, Janet Blumer, David Haussler, Ross McConnell, and Andrzej Ehrenfeucht. Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM, 34(3):578–595, 1987.

[4] Timothy M Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on the
RAM, revisited. In Proceedings of the twenty-seventh annual symposium on computational geometry,
pages 1–10. ACM, 2011.

9

[5] Maxime Crochemore and Christophe Hancart. Automata for matching patterns. In Handbook of formal
languages, pages 399–462. Springer, 1997.

[6] Maxime Crochemore and Renaud Vérin. Direct construction of compact directed acyclic word graphs. In
Alberto Apostolico and Jotun Hein, editors, CPM, volume 1264 of Lecture Notes in Computer Science,
pages 116–129. Springer, 1997.

[7] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM, 52(4):552–581,
2005.

[8] Paolo Ferragina and Gonzalo Navarro. Pizza&Chili repetitive corpus. http://pizzachili.dcc.

uchile.cl/repcorpus.html. Accessed: 2015-01-25.

[9] Travis Gagie, Pawe l Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J Puglisi. LZ77-based
self-indexing with faster pattern matching. In LATIN 2014: Theoretical Informatics, pages 731–742.
Springer, 2014.

[10] Juha Kärkkäinen and Esko Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for string
matching. In Proc. 3rd South American Workshop on String Processing (WSP’96, pages 141–155, 1996.

[11] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences. Theoretical
Computer Science, 483:115–133, 2013.

[12] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. Information Theory, IEEE
Transactions on, 22(1):75–81, 1976.

[13] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. In Combina-
torial Pattern Matching, pages 45–56. Springer, 2005.

[14] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of highly repet-
itive sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.

[15] Jakub Radoszewski and Wojciech Rytter. On the structure of compacted subword graphs of ThueMorse
words and their applications. Journal of Discrete Algorithms, 11(0):15–24, 2012. Special issue on
Stringology, Bioinformatics and Algorithms.

[16] Mathieu Raffinot. On maximal repeats in strings. Information Processing Letters, 80(3):165–169, 2001.

[17] Wojciech Rytter. The structure of subword graphs and suffix trees of Fibonacci words. Theoretical
Computer Science, 363(2):211–223, 2006.

[18] Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed indexes are
superior for highly repetitive sequence collections. In String Processing and Information Retrieval, 15th
International Symposium, SPIRE 2008, Melbourne, Australia, November 10-12, 2008., pages 164–175,
2008.

[19] Dan E Willard. Log-logarithmic worst-case range queries are possible in space Theta(n). Information
Processing Letters, 17(2):81–84, 1983.

[20] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE Trans-
actions on information theory, 23(3):337–343, 1977.

10

http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html

Appendix

Lower bound on the number of arcs in the CDAWG

Lemma 4. The number of arcs in CDAWGT is Ω(log n) for any string T ∈ [1..σ]n−1# and any σ < n− 1.

Proof. CDAWGT must contain a path from the source to the node that corresponds to every suffix of T , and
since such paths are n, we need log n bits to discriminate at least one of these paths from the others. If
σ = 2, every node of the CDAWG has exactly two outgoing arcs, thus there must be a path from the source
to the node associated with a suffix of T that has length at least log n. If σ > 2, we can transform CDAWGT
into a DAG with degree at most two by multiplying the number of nodes and arcs by a factor of at most
two. Indeed, if a node v has outdegree k, we can replace the arcs that start from v with a tree rooted at v
whose leaves are the original destinations of the arcs from v: this tree has k− 2 additional nodes and 2k− 2
arcs. The DAG that results from this transformation must have at least log n arcs, thus the number of arcs
in CDAWGT is Ω(log n).

The same proof clearly holds for left extensions of maximal repeats, using CDAWGT rather than CDAWGT .

Proof of Lemma 1

Proof. Let v be an internal node of STT such that `(v) is a maximal repeat of T , and let v′ be the internal
node of STT such that `(v′) = `(v). Then, for every edge (v, w) ∈ Fr in STT such that v = parent(w) there
is an implicit Weiner link from v′ in STT labeled by the first character of `(v, w). Conversely, an implicit
Weiner link labeled by character b ∈ [0..σ] from any internal node v′ of STT implies that 1 = |Σr

T
(b`(v′))| <

|Σr
T

(`(v′))|, therefore it must be that |Σ`
T

(`(v′))| > 1. It follows that `(v′) is a maximal repeat of T , thus

there is a node v in STT with `(v) = `(v′), and b is the first character of the label of an edge (v, w) ∈ Fr
such that v = parent(w).

Similarly, for every edge (v, w) ∈ Er such that v = parent(w) there is an explicit Weiner link from v′

in STT labeled by the first character of `(v, w). Conversely, an explicit Weiner link labeled by character

b ∈ [0..σ] from any internal node v′ of STT with at least two Weiner links implies that string `(v′) is a maximal

repeat, and that there is an edge (v, w) ∈ Er such that `(v) = `(v′), v = parent(w), and `(v, w) = bV for
some V ∈ [0..σ]∗.

Lemma 1 immediately implies that the strings in M`
T label internal nodes of STT that are not the

destination of any suffix link. However, there can be internal nodes of STT that are not the destination of
any suffix link but that are not maximal repeats.

11

	1 Introduction
	2 Preliminaries
	2.1 Relationships among maximal repeats, runs in BWT, and LZ factors
	2.2 Repetition-aware data structures

	3 Combining runs in BWT and LZ factors
	4 Combining runs in BWT and maximal repeats

