24,719 research outputs found

    Universality Class of One-Dimensional Directed Sandpile Models

    Full text link
    A general n-state directed `sandpile' model is introduced. The stationary properties of the n-state model are derived for n < infty, and analytical arguments based on a central limit theorem show that the model belongs to the universality class of the totally asymmetric Oslo model, with a crossover to uncorrelated branching process behavior for small system sizes. Hence, the central limit theorem allows us to identify the existence of a large universality class of one-dimensional directed sandpile models.Comment: 4 pages, 2 figure

    Can the frequency-dependent specific heat be measured by thermal effusion methods?

    Full text link
    It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat spectroscopy do not give the isobaric specific heat, but rather the so-called longitudinal specific heat. Here it is shown that heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat.Comment: Paper presented at the Fifth International Workshop on Complex Systems (Sendai, September, 2007), to appear in AIP Conference Proceeding

    On detecting the large separation in the autocorrelation of stellar oscillation times series

    Full text link
    The observations carried out by the space missions CoRoT and Kepler provide a large set of asteroseismic data. Their analysis requires an efficient procedure first to determine if the star is reliably showing solar-like oscillations, second to measure the so-called large separation, third to estimate the asteroseismic information that can be retrieved from the Fourier spectrum. We develop in this paper a procedure, based on the autocorrelation of the seismic Fourier spectrum. We have searched for criteria able to predict the output that one can expect from the analysis by autocorrelation of a seismic time series. First, the autocorrelation is properly scaled for taking into account the contribution of white noise. Then, we use the null hypothesis H0 test to assess the reliability of the autocorrelation analysis. Calculations based on solar and CoRoT times series are performed in order to quantify the performance as a function of the amplitude of the autocorrelation signal. We propose an automated determination of the large separation, whose reliability is quantified by the H0 test. We apply this method to analyze a large set of red giants observed by CoRoT. We estimate the expected performance for photometric time series of the Kepler mission. Finally, we demonstrate that the method makes it possible to distinguish l=0 from l=1 modes. The envelope autocorrelation function has proven to be very powerful for the determination of the large separation in noisy asteroseismic data, since it enables us to quantify the precision of the performance of different measurements: mean large separation, variation of the large separation with frequency, small separation and degree identification.Comment: A&A, in pres

    Diagnosing people with dementia using automatic conversation analysis

    Get PDF
    A recent study using Conversation Analysis (CA) has demonstrated that communication problems may be picked up during conversations between patients and neurologists, and that this can be used to differentiate between patients with (progressive neurodegenerative dementia) ND and those with (nonprogressive) functional memory disorders (FMD). This paper presents a novel automatic method for transcribing such conversations and extracting CA-style features. A range of acoustic, syntactic, semantic and visual features were automatically extracted and used to train a set of classifiers. In a proof-of-principle style study, using data recording during real neurologist-patient consultations, we demonstrate that automatically extracting CA-style features gives a classification accuracy of 95%when using verbatim transcripts. Replacing those transcripts with automatic speech recognition transcripts, we obtain a classification accuracy of 79% which improves to 90% when feature selection is applied. This is a first and encouraging step towards replacing inaccurate, potentially stressful cognitive tests with a test based on monitoring conversation capabilities that could be conducted in e.g. the privacy of the patient’s own home

    Non-radial oscillations in M-giant semi-regular variables: Stellar models and Kepler observations

    Full text link
    The success of asteroseismology relies heavily on our ability to identify the frequency patterns of stellar oscillation modes. For stars like the Sun this is relatively easy because the mode frequencies follow a regular pattern described by a well-founded asymptotic relation. When a solar like star evolves off the main sequence and onto the red giant branch its structure changes dramatically resulting in changes in the frequency pattern of the modes. We follow the evolution of the adiabatic frequency pattern from the main sequence to near the tip of the red giant branch for a series of models. We find a significant departure from the asymptotic relation for the non-radial modes near the red giant branch tip, resulting in a triplet frequency pattern. To support our investigation we analyze almost four years of Kepler data of the most luminous stars in the field (late K and early M type) and find that their frequency spectra indeed show a triplet pattern dominated by dipole modes even for the most luminous stars in our sample. Our identification explains previous results from ground-based observations reporting fine structure in the Petersen diagram and sub ridges in the period-luminosity diagram. Finally, we find `new ridges' of non-radial modes with frequencies below the fundamental mode in our model calculations, and we speculate they are related to f modes.Comment: 8 page, 5 figures, accepted by ApJL (ApJ, 788, L10

    Butterfly diagram of a Sun-like star observed using asteroseismology

    Full text link
    Stellar magnetic fields are poorly understood but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measure the variation of their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data, to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation of the stellar rotation rates. We observe a clear variation of the latitude of the starspots. It is the first time such a diagram is constructed using asteroseismic data.Comment: 8 pages, 4 figures, accepted in A&A Letter
    corecore