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MEASURING THE COMPLEXITY OF THE
OCEAN FLOOR

T. Sams, B. Stage, F. T. Agerkvist, and T. Christensen
Danish Defence Research Establishment,
Ryvangs Alle 1, 2100 Copenhagen ), Denmark
Phone +45 3915 1749
Fax: +45 3929 1533
E-mail: ts@ddre.dk

Abstract. In an attempt to classify the complexity of ocean floor,
we suggest a neural-network based algorithm which predicts a pixel
based on its surroundings. The mean square of the difference be-
tween the original sidescan sonar image and the predicted image is
then used as a measure of the complexity of the image.

PROLOGUE

The allocation of routes for ships in potentially mined water is a major chal-
lenge in modern warfare. We present an attempt to rank the natural back-
ground according to how easy it is to hide mines on the background. In special
cases, it may be possible to model the background in great detail, and sub-
tract the model from the original image, thus enhancing objects/structures
that do not fit into the background. In the present paper, we present the
suggestion to model the background by training a neural network to predict
a pixel from its surroundings. The methods discussed are applied to sidescan
sonar data.

DESIGN OF NEURAL NETWORK

In order to make a simple predictor for an image based on a feed-forward
error back-propagation neural network, we suggest to map the surroundings
of the point through a network with one hidden layer to the point. This is
illustrated in figure 1. In figure 1b the full architecture, including the hidden
layer, is shown.

A fully connected two-layer error-back-propagating network is described
here [1]. The input vector v; is propagated through the network as

hj = iji Vi (1)



Figure 1: a: Illustration of the trainable filter. The input vector is formed by the
image values scaled to the (—1,1)-interval in the light-grey area. The the input
vector is propagated through a hidden layer to the target, which is the central
pixel. The white area which is ignored should typically have the size of the maxi-
mal structure which one wants to separate from the background. In order for the
comparison to be fair, the linear filter uses the same input and output regions as
are used in the case of the neural network.

b: Complete architecture of the neural network filter. The filter coefficients are ad-
justed using gradient descent by selecting random input samples from the training
set. The performance is evaluated in a separate test region.

vi = g(hy) (2)
hy = Zﬂ%j vj 3)
v = g(hg) (4)

with weights wj; connecting the input to the hidden and wyg; connecting the
hidden layer to the output wvy.

The activation function is chosen to be the hyperbolic tangent g(h) =
tanh h mapping the signal into the interval (—1,1). Biases are included by
connecting all but the units in the input layer to an extra input fixed at —1.
The weights are initialized at normal distributed values with zero mean and
variation 1/N; for wj; and variation 1/N; for wy;.
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Figure 2: 1) Training area used for training of the neural network and adjustment of
the parameters in the linear predictor in the following figures. The global variance
in the image is G;lobal = 2247.

2) Test region.

During training the weights are changed gradually, following the gradient
descent rule, such as to minimize the error function using the gradient descent
learning rule. The error function is taken to be the relative entropy

S = ZS (5)
_Z(1+tk log Z’;+ (l—tk)logl_tk> (6)
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where t, denotes the desired answer (target) given the input icon v; producing
the output vg. The error measure diverges when the output is anti-correlated
with the target.

In the gradient descent learning rule a weight is changed by an amount
proportional to the size of the partial derivative of the error function with
respect to the weight. With the entropic error function (5) we find

08
Py = Ok (7)
ék = tk—’l)k (8)
08
6’wjz' = —5j'l)z' (9)
6j = (l—vf)Zwkj(Sk (10)
k

describing the back propagation of the error. This generalizes to more layers
by duplicating equations (9) and (10) for each extra layer.
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Figure 3: Comparison between the performance of a NN filter of size 7 x 7 with
a 1 x 1 opening and a linear filter with the same geometry. The neural network
was trained with 2 units in the hidden layer. Both the neural network and the
linear predictors had their parameters adjusted in the training region. The mean-
square of the difference images are oy = 650 and o}, = 655 respectively, i.e.
the predictions are of the same quality. The contrast in the difference images has
been scaled a factor 2 relative to the original image. The mean-square of the
difference between the average in the input region to the filter and the central pixel
026 = 1849.

In order to damp oscillations during training we added a momentum term
so the weight change gets some memory of previous time steps[2]. The weight

is then changed
oS

w
at update t. Training is typically convergent with 7 = 0.0001. The momen-
tum parameter is set to a = 0.9.

Aw(t) = (t) + a Aw(t—1) (11)

LINEAR PREDICTION OF PIXELS

In order to evaluate the performance of the non-linear predictor, we compare
to the performance of a linear predictor. The review of the linear predictor
below below serves to establish the formalism. The filter may be viewed as
that shown in figure 1. The position of the filter is labelled p and the pixels
in the input region are labelled i or j. If we let a be the linear expansion
coefficients, the predicted target (central) pixel may be written

tNP = Zaivip. (12)
i
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Figure 4: Comparison between the performance of a NN filter of size 9 x 9 with
a 3 X 3 opening and a linear filter with the same geometry. The neural network
was trained with 2 units in the hidden layer. Both the neural network and the
linear predictors had their parameters adjusted in the training region. The mean-
square of the difference images are ofy = 1576 and o},.,, = 1616 respectively,
i.e. the predictions are of the same quality. The contrast in the difference images
has been scaled a factor 2 relative to the original image. The mean-square of the
difference between the average in the input region to the filter and the central pixel
026 = 2116.

We define an error function

E=) (t,—1)* (13)
P
which is minimal when
oF
s = 2 Z Z AjVjp — tp Vip (14)
@i P J
QZOéj Zvjpvip — sziptp (15)
J P P

vanishes for all i. Defining the signal correlation matrix

Tji = ) Vjplip (16)
P

and the target-signal correlation vector

ri = Z Viptp (17)
p
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Figure 5: Comparison between the performance of a NN filter of size 9 x 9 with
a 5 X b opening and a linear filter with the same geometry. The neural network
was trained with 2 units in the hidden layer. Both the neural network and the
linear predictors had their parameters adjusted in the training region. The mean-
square of the difference images are ofy = 2070 and o},.,, = 2098 respectively,
i.e. the predictions are of the same quality. The contrast in the difference images
has been scaled a factor 2 relative to the original image. The mean-square of the
difference between the average in the input region to the filter and the central pixel

2o = 2227.

we find

E OéjO'ji = T;
J
— E : 1
o; = T]O'jz- .
J

The difference between the signal and the linear prediction is then
At, = t,—1,
-1
= tp— Z Tj03i Vip
ij

-1
tp — E :tq“jqaji Vip-
ijq

(18)

(19)

(20)
(21)

(22)

Note that the number of positions P used to determine the filter must be

larger than I.



NN difference linear difference

Figure 6: Comparison between the performance of a NN filter of size 19 x 19 with
a 15 x 15 opening and a linear filter with the same geometry. The neural network
was trained with 2 units in the hidden layer. Both the neural network and the
linear predictors had their parameters adjusted in the training region. The mean-
square of the difference images are ofy = 2209 and o},.,, = 2209 respectively,
i.e. the predictions are of the same quality. The contrast in the difference images
has been scaled a factor 2 relative to the original image. The mean-square of the
difference between the average in the input region to the filter and the central pixel
026 = 2200.

THE MEASURE OF COMPLEXITY

After having trained the neural network in a training region, it is used to
make predictions in a similar, but separate test region. The mean-square
deviation between the prediction and the original images is taken as a measure
of complexity. The hope was that the non-linear predictor would perform
significantly better than a linear predictor.

PERFORMANCE OF THE NN PREDICTOR COMPARED TO
THE LINEAR PREDICTOR

In figure 2 we show the training and test regions used in the comparison of
the performance of the neural network and the linear predictors. In figures
3-6 is shown the resulting differences between prediction and original for
different openings of the filters. In all cases, the neural network and the
linear predictors give rise to practically identical measures of complexity.

We have performed the same analysis on various examples of seabed: sand
ripples, trawl tracks, stones, and seaweed. In all cases the linear predictor
performs equally well as the neural network predictor.



DISCUSSION AND FUTURE WORK

The linear as well as the neural network auto predictors perform poorly when
the input filter is opened. One possible explanation could be that, when
trying to make a linear or nonlinear fit from points far from the central point,
good knowledge of higher order derivatives of the field become important.
This, on the other hand, puts high demands on the quality of the data. The
sidescan sonar data, we have had access to have been of low quality, with
only 4 bits of information in each pixel, saturation problems, and systematic
errors. It is of importance for the evaluation of the NN and linear predictors
to test the methods with data of better quality.

We are still in the process of clarifying how the measures of complexity on
different scales should be normalized and possibly be compared. We expect
to be able to present these results at the NNSP 2000 conference. Further, we
are in the process of getting better data for the evaluation of the measures of
complexity presented here and expect to present a better analysis using data
with less noise than we have shown here.

EPILOGUE

We have investigated the possibility to use a neural network as a tool to
predict a central region from the surroundings to create a good measure
of complexity of an image. We conclude that the suggested neural network
performs no better than a linear predictor when used on a sonar image. Thus,
the linear predictor should be preferred.
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