741 research outputs found

    Estimation of 3D electron density in the Ionosphere by using fusion of GPS satellite-receiver network measurements and IRI-Plas model

    Get PDF
    GPS systems can give a good approximation of the Slant Total Electron Content in a cylindrical path between the GPS satellite and the receiver. International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model can also give an estimation of the vertical electron density profile in the ionosphere for any given location and time, in the altitude range from about 50 km to 20000 km. This information can be utilized to obtain total electron content between any given receiver and satellite locations based on the IRI-Plas model. This paper explains how the fusion of measurements obtained from a GPS satellite-receiver network can be utilized together with the IRI-Plas model in order to obtain a robust 3D electron density model of the ionosphere. © 2013 ISIF ( Intl Society of Information Fusi

    Classification of regional ionospheric disturbance based on machine learning techniques

    Get PDF
    In this study, Total Electron Content (TEC) estimated from GPS receivers is used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. For the automated classification of regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. Performance of developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing developed classification technique to Global Ionospheric Map (GIM) TEC data, which is provided by the NASA Jet Propulsion Laboratory (JPL), it is shown that SVM can be a suitable learning method to detect anomalies in TEC variations

    Sparsity order estimation for single snapshot compressed sensing

    Get PDF
    In this paper we discuss the estimation of the spar-sity order for a Compressed Sensing scenario where only a single snapshot is available. We demonstrate that a specific design of the sensing matrix based on Khatri-Rao products enables us to transform this problem into the estimation of a matrix rank in the presence of additive noise. Thereby, we can apply existing model order selection algorithms to determine the sparsity order. The matrix is a rearranged version of the observation vector which can be constructed by concatenating a series of non-overlapping or overlapping blocks of the original observation vector. In both cases, a Khatri-Rao structured measurement matrix is required with the main difference that in the latter case, one of the factors must be a Vandermonde matrix. We discuss the choice of the parameters and show that an increasing amount of block overlap improves the sparsity order estimation but it increases the coherence of the sensing matrix. We also explain briefly that the proposed measurement matrix design introduces certain multilinear structures into the observations which enables us to apply tensor-based signal processing, e.g., for enhanced denoising or improved sparsity order estimation. © 2014 IEEE

    Renal Dysfunction Criteria in Critically Ill Children: The PODIUM Consensus Conference

    Full text link
    CONTEXT Renal dysfunction is associated with poor outcomes in critically ill children. OBJECTIVE To evaluate the current evidence for criteria defining renal dysfunction in critically ill children and association with adverse outcomes. To develop contemporary consensus criteria for renal dysfunction in critically ill children. DATA SOURCES PubMed and Embase were searched from January 1992 to January 2020. STUDY SELECTION Included studies evaluated critically ill children with renal dysfunction, performance characteristics of assessment tools for renal dysfunction, and outcomes related to mortality, functional status, or organ-specific or other patient-centered outcomes. Studies with adults or premature infants (≤36 weeks' gestational age), animal studies, reviews, case series, and studies not published in English with inability to determine eligibility criteria were excluded. DATA EXTRACTION Data were extracted from included studies into a standard data extraction form by task force members. RESULTS The systematic review supported the following criteria for renal dysfunction: (1) urine output <0.5 mL/kg per hour for ≥6 hours and serum creatinine increase of 1.5 to 1.9 times baseline or ≥0.3 mg/dL, or (2) urine output <0.5 mL/kg per hour for ≥12 hours, or (3) serum creatinine increase ≥2 times baseline, or (4) estimated glomerular filtration rate <35 mL/minute/1.73 m2, or (5) initiation of renal replacement therapy, or (6) fluid overload ≥20%. Data also support criteria for persistent renal dysfunction and for high risk of renal dysfunction. LIMITATIONS All included studies were observational and many were retrospective. CONCLUSIONS We present consensus criteria for renal dysfunction in critically ill children

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb−1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    Susceptibility testing of Haemophilus influenzae— an international collaborative study in quality assessment

    Get PDF
    In order to compare the prevalence of antibiotic resistance in different geographical areas, it is necessary to ensure that agreement is achieved between laboratories on the assignment of strains to ‘susceptible' and ‘resistant' categories. An international quality assessment study, involving 15 laboratories in eight countries, was performed to investigate the standard of performance of the susceptibility testing of Haemophilus influenzae. One hundred and fifty strains of H. influenzae were distributed from the London Hospital Medical College (LHMC) to all laboratories who were asked to test the susceptibility of the strains to ampicillin, chloramphenicol, tetracycline, trimethoprim, cephalosporins and ciprofloxacin. Laboratories were also asked to provide the details of methodology to test the susceptibility. Significant discrepancy between the LHMC and the participating laboratories appeared in the detection of resistance to ampicillin (especially β-lactamase-negative strains resistant to ampicillin) as well as the assignment of susceptibility and resistance to chloramphenicol, tetracycline and trimethoprim. Often these reflected the use of inappropriate breakpoints which led to erroneous assignment of susceptibility. Other variations including disc content, medium and supplement, inoculum as well as failure to measure zone sizes properly also led to some repeating anomalie
    • …
    corecore