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Abstract — In this paper we discuss the estimation of the spar-
sity order for a Compressed Sensing scenario where only a sin-
gle snapshot is available. We demonstrate that a specific design
of the sensing matrix based on Khatri-Rao products enables us
to transform this problem into the estimation of a matrix rank
in the presence of additive noise. Thereby, we can apply exist-
ing model order selection algorithms to determine the sparsity
order. The matrix is a rearranged version of the observation
vector which can be constructed by concatenating a series of
non-overlapping or overlapping blocks of the original observa-
tion vector. In both cases, a Khatri-Rao structured measure-
ment matrix is required with the main difference that in the lat-
ter case, one of the factors must be a Vandermonde matrix. We
discuss the choice of the parameters and show that an increasing
amount of block overlap improves the sparsity order estimation
but it increases the coherence of the sensing matrix. We also
explain briefly that the proposed measurement matrix design
introduces certain multilinear structures into the observations
which enables us to apply tensor-based signal processing, e.g.,
for enhanced denoising or improved sparsity order estimation.

1. INTRODUCTION

Compressed Sensing (CS) is a novel paradigm in sampling theory
that allows to acquire signals at sampling rates significantly below
the Nyquist rate without any loss of information, provided that the
signals possess a sparse representation in some basis. A vast amount
of theoretical results is available showing under which conditions
the recovery of the signal can be achieved efficiently, i.e., by solving
convex optimization problems [1]. Obviously, the sparsity order,
i.e., the number of non-zero coefficients in the sparsity-providing
basis, has a tremendous impact on the recovery stage, in particular
it determines how many measurements are required for successful
recovery [2].

However, there exist a large number of applications where the
sparsity order is not known beforehand and may even vary with time.
In such cases, it would be desirable if we could estimate the sparsity
order before we run the recovery algorithm using an estimator that is
significantly less complex than the reconstruction itself. Moreover,
this would even allow us to adapt our reconstruction strategy, i.e., to
choose a recovery algorithm whose performance and complexity is
best suited to the current sparsity order. Also, if we find the sparsity
order too large to expect successful CS recovery, we can provide a
feedback to the measurement stage to perform more measurements
provided that the application allows for it. Thereby, the measurement
effort can be adapted to the complexity of the current signal/scene.

In [3] we have discussed sparsity order estimation in the spe-
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cial case where the scene (a) can be measured multiple times, (b)
is “stationary” such that the sparsity pattern does not change during
these measurements, and (c) provides linearly independent measure-
ments, e.g., by observing modulated signals. In this case, the com-
pressed observations represent a linear mixture superimposed by ad-
ditive noise so that the sparsity order is equal to the effective rank of
the observation matrix and model order selection techniques can be
applied for its estimation as shown in [3] .

In this paper we extend this work to the more challenging case
where either only a single snapshot is available or the scenario is
completely static so that observing it multiple times with the same
measurement matrix does not provide linearly independent observa-
tions. We develop a measurement matrix design that recovers linear
independence and thus allows to estimate the sparsity order from the
effective rank of a matrix constructed by concatenating blocks of the
observed vector along its columns. We discuss the choice of the pa-
rameters for both the case of non-overlapping blocks (in which case
the measurement matrix needs to be Khatri-Rao structured) as well
as overlapping blocks (in which case one of the Khatri-Rao factors
needs to be a Vandermonde matrix). This paper is structured as fol-
lows: in Section 2 we analytically derive the required structure of the
measurement matrix for rank recovery both for the non-overlapping
as well as the overlapping case. In Section 3 we analyze the co-
herence of the Khatri-Rao structured measurement matrix in order
to show the effect of the required structure on the recovery perfor-
mance. Section 4 contains a discussion on the choice of the parame-
ters as well as some notes on the links between the proposed design
and concepts from multilinear (tensor) algebra. Numerical results
are presented in Section 5 before concluding in Section 6.

2. PROPOSED DESIGN
Consider CS scenario of the following form
y=®-A-s+n, (1)

where y € C™** represents a vector of compressed observations,
s € CV*1 is the K -sparse coefficient vector (i.e., it contains exactly
K non-zero elements), A ¢ CN*V js the sparsity-providing basis,
1 contains the additive measurement noise, and ® ¢ CM*V is the
measurement matrix. Moreover, we require the following assump-
tions:

(A1) The measurement matrix ® can be designed freely.
(A2) The basis A is an N x N identity matrix.
(A3) The sparsity order K satisfies K < Kax.
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Note that as long as the basis A is invertible and known when
designing the measurement kernel ®, (A2) holds without loss of
generality since for A # Iy we can replace ® by & = & - A™!
and achieve the same result. Regarding (A3), the maximum allow-
able sparsity order Kmax depends on the amount of block overlap.
As we show in Section 4, it is given by Kmax = VM - 1 for non-
overlapping blocks, it grows with larger overlap, and it eventually
reaches Kax = % — 1 for maximum overlap.

For simplicity, let us consider the noise-free case m = 0. In
order to recover the sparsity order K from y we would like to break
y into smaller blocks y, € C™**,b=1,2, ..., B and define a matrix
Y =[y1,...,yB] € C™*% such that rank{Y} = K. From (1) it is
clear that y, = ®; - s where @, € C™N contains the m rows that
correspond to the b-th block of Y. This sparks the question which
condition ® must fulfill such that for any K-sparse vector s, we
have rank{Y} = K. For the case of non-overlapping blocks, this
question is answered by the following Theorem.

Theorem 1. For B non-overlapping blocks of size m = %, any
K < min(B,m), and any K-sparse s, we have rank{Y } = K if
and only if ® = C ¢ ®(, where C ¢ CBN and &y ¢ C"™N | the
Kruskal-rank of C and ® is > K, and ¢ denotes the column-wise

Kronecker (Khatri-Rao) product.

Proof: The “only-if” part becomes evident by considering K =
1. In this case, we have y, = ®3- s = @y, - Sn, Where sy, is the value
of the single non-zero in s at position n and ¢ ,, is the n-th column
of ®,. For Y we then have Y = [¢1,n,...,9B,n]* Sn Which is
rank-one only if all columns ¢ ,, are scaled version of one common
NON-Zero VECtor 4o, n, i.€., Yu.n = Coh,n - Po,n. Stacking ¢y, back
into @ we obtain ¢,, = ¢, ® ¥o,, and therefore @ = C o Pg.

For the “if”” part, consider y = ® -s = (C ¢ ®¢) - s. Its re-
shaped version Y can be expressed as Y = @ - diag{s} - c’ =
B i - diag{sk} - Cf, where &g rx € C™%, Cx ¢ CP*¥ and
sk contain only the K columns/values corresponding to the non-
zero entries in 8. Since ®¢ x and C'x have full column rank K and
provide a rank factorization of Y, we have rank{Y } = K. Obvi-
ously, this can only be fulfilled if K < B and K <m.

|

Note that the theorem requires the sparsity order to satisfy K <

min(m, B). Since m = %, to maximize this upper bound it is best

to choose m = B = /M if M is a square number.

‘We now move to the case where we let blocks overlap. To this
end, we divide y € C*** into B blocks of m samples with an offset
of p samples from block to block. In other words, the b-th block
yp € C™ contains samples (b—1) -p+1upto (b—1)-p+m. To
cover all M samples with B blocks we therefore obtain the condition
(B-1)-p+m = M which implies that the number of blocks is
given by B = M% + 1 and that M — m must be divisible by p.
The case p = m is the one where the blocks do not overlap. For
the overlapping case 1 < p < m the following theorem provides the
required structure for @ to allow to obtain K from the rank of Y':

Theorem 2. For B overlapping blocks of size m (with an offset
of p samples between blocks), any K < min(B,m), and any K-
sparse s, we have rank{Y } = K if and only if the matrix ® can
be constructed by taking the first M rows of C ¢ ®¢, where ®¢ €

M
cPN Ce (C[T]XN, C is a Vandermonde matrix, ® and C have a
Kruskal-rank > K, and [-] denotes the operation of rounding to the
next larger integer number.

Proof: The proof proceeds in a similar fashion to the proof of
Theorem 1. We begin by considering K = 1 to prove the “only-
if” part. As before we obtain Y = [¢1,n,...,9B,n] - Sn, Where
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@b,n is the b-th block of the n-th column of ®. To obtain the de-
sired property that rank{Y } = K = 1, we therefore require that all
@u,n are linearly dependent, i.e., @sn = Cb,n - Pb-1,n. For non-
overlapping blocks, all the ¢ ,, are different, which immediately
yields the Khatri-Rao structure with an arbitrary matrix C. We now
show that for overlapping blocks, there must be much more structure
in the coefficients C.

To this end, let us consider three consecutive columns b — 1, b,
and b + 1. We have the two scaling conditions

2
3)
which must be valid for all elements in the vectors. However, since

the blocks overlap by m — p samples, they have common elements.
In particular

Pb,n = Cbn * Pb-1,n

Pb+1,n = Cb+1,n * Pb,n

[po-1.n]) = [Po,n]k-p) “

[Po,n](k) = [P1+1,0] (k-p) )

forall k = p+1,p+2,...,m. Inserting (2) and (3) into (5) we obtain
Con - [Po-1,n](k) = Cortn - [Pon](k-p)- (6)

However, since (4) must be true forall k = p+ 1,p + 2,...,m this

implies that cp41,n = Cp,n. Since b is arbitrary, the same argument
can be applied to show that ¢, ,, = ¢, Vb =1,2,..., B. Therefore,
we have

.=y @
Due to the overlap, to satisfy (7) we can choose only the first p ele-
ments of ¢ ,, as well as the constant ¢,, € C freely. The remaining
elements of ¢, are filled by replicating these p elements, scaled by
¢n, ¢2, and so on. This leads to the Vandermonde structure of C.

For the “if” part, it is easy to see that for every K we can write
Y as ® - diag{s} - Cg, where ® contains the first m rows of
C[ﬂ] <& <I>(], and C[

P
B rows of C, respectively. Therefore, we can write Y as <i>o) K-
diag {sk} - CE,K» where tio,K e CmK, Cp,i € CB*¥ and sk
contain the K columns/values corresponding to the nonzero entries
in s. Since C and ®( have full Kruskal-rank K, the same holds true
for @0 and C [4] and thus we have rank{Y} = K. O

Note that Theorem 2 implies that in the special case p = 1 (max-
imal overlap), the entire sensing matrix ® must be a Vandermonde
matrix. Vandermonde structured measurement matrices have been
proposed in the CS context before [5, 6] and rank recovery for Van-
dermonde mixtures has been studied in the context of harmonic re-
trieval [7]. In fact, for the case p = 1 the mapping from y to Y
is known as spatial smoothing [8] in the harmonic retrieval context
where it is applied as a preprocessing step for subspace-based esti-
mators in order to decorrelate coherent signals.

It is also important to note that the proposed design can also be
applied to the case where y; corresponds to subsequent CS mea-
surements in a setting where we can change the measurement matrix
from one measurement to the next. In this case it recovers the re-
quired rank for scenarios where the scene is static and would hence
not provide linearly independent observations by itself. In such a
setting we could adapt the number of measurements to the complex-
ity of the scene, e.g., by recovering the scene from an initial set of
B observations if the sparsity test suggests that K is small enough
for successful recovery, otherwise continuing to observe until a suf-
ficient number of observations have been collected.

2 1
Pb,n = Cn " Pb-1,n = Cp - Pb-2,n = “Pin.

1 and C’p represent the first [%-‘ and the first

m
P



3. COHERENCE ANALYSIS

In this section we analyze the proposed sensing matrix design in
terms of the coherence of the measurement matrices @ that are ob-
tainable with the structure derived in Theorem 1 and 2.

For simplicity, let us assume that M is divisible by p which al-
lows us to write & = C ¢ ® for both cases, the only difference
being that in the case of overlap C must be Vandermonde whereas
without overlap, C' can be arbitrary. The mutual coherence of ® is
defined as

‘Pgl *Pnoy

(@) - P Pn
[on, ”2 S [ ”2

. )

max
ni#nge[1,2,...,N]

Using the column-wise Kronecker structure and the fact that (a ®
b)T(cod) =aTc-b"das well as |a®b|, = |a|, - [b], we
obtain

H H

Cp, " Cn ny " n

M(‘I>) _ max 1 2 . $Po,ny " PO,ny
ni#nael1,2, N[ [€ny |y - leni o | [1P0n 5+ [40n:

Hny,ng (C) Hny,ng(Po)
= n1.m2(C) - tny oy (P 9
o, A s, 2(C) - iy nz (P0) (©)
<p(C) - pu(Po) (10

Note that (9) is reminiscent of an argument made in [9] (Lemma 1).
There, the authors had considered a Kronecker product structure for
the sensing matrix which leads to the product bound (10) being tight.
However, since we consider a Khatri-Rao product, this is not the case
here (by permuting the columns of the factors appropriately, a lower
value can be achieved). To further analyze (9) we note that for an

arbitrary P x ) matrix, its coherence is bounded by 1 >+ / %,
a bound known as the Welch bound [10]. Moreover, this bound is
achieved only if all pairs of columns have the same magnitude inner
product, which is then equal to this lower bound (such matrices are
called equiangular tight frames (ETF) [11]). In the case of no overlap
(p=m= VM), C and ®, can be designed freely. Therefore, if C
and ®( achieved the Welch bound, we would have

N-m N—% _ N-m
MO N EZw-n mv-n P

However, the Welch bound is not achievable for all matrix dimen-
sions P and Q). In particular, it is known that ETFs do not ex-
ist for P < QZ, a condition which is satisfied for both C and ®¢
for M = m?. Empirically, this leads to a higher coherence than
what (11) predicts. Note that the prediction may be improved using
bounds that are tighter than the Welch bound for P < Q? (e.g., [12]).

In the overlapping case, the matrix C must be Vandermonde.
Among the class of P x ) Vandermonde matrices V/, the frame ob-
tained by considering the top P rows of a () x( DFT matrix achieves
the lowest coherence (cf. [13], which also shows that for prime Q
these frames have maximal spark). Its coherence is given by con-
sidering the inner product between two adjacent columns which can
easily be shown to be

. .B
P T EER Ul Gk ) E
el Towalls |~ Psin(3)

Using a similar reasoning as in the non-overlapping case, an opti-
mally designed matrix ®, ¢ CP*"V together with the Vandermonde
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Fig. 1. Coherence of the matrix ® for different amount of block
advance p: p = 1 corresponds a the Vandermonde matrix, p = 8 to
overlapping blocks, p = 16 to non-overlapping blocks, and “(Ref)”
to an unstructured matrix ®.

M
. M N . .
matrix C € C'» *" achieves a coherence given by

u(<I>)=Sin(ﬂ"’%)-\/ Nop (13)
M -sin(%) p(N -1)

P

Figure 1 demonstrates the dependence of the achievable coher-
ence on the block overlap. We consider a scenario where M = 256
and N = 1000. We compare the case of maximal block overlap
(p = 1), no overlap (p = /M = 16), the intermediate case p = 8
and as a reference the case where @ is unstructured matrix (which
does not allow any sparsity order estimation). For each case, we dis-
play the value of the coherence that is predicted by the Welch bound
(according to (11) and (13)) as well as the coherence achieved by
drawing the matrices randomly (from a complex Gaussian distribu-
tion), choosing the best among 200000 trials. As expected, the co-
herence we achieve practically is higher than the Welch bound pre-
dicts. However, both the theoretical and the empirical results show
the same trend, namely, the larger the block overlap (i.e., the smaller
p), the higher the coherence.

4. DISCUSSION

4.1. Choice of the parameters

The structure of @ that is provided by Theorem 1 and Theorem 2
provides an exhaustive answer to the question which sensing strate-
gies allow to estimate the sparsity order from the matrix rank of a
rearranged version of the single observation vector y. As we have
shown there are essentially two parameters we can choose: the block
length m and the block advance p. In this section, we discuss the
implications of these parameters on the design of ® as well as the
sparsity order estimation step.

Let us begin with the block length m. Note that the design of the
sensing matrix ® does not depend on m. Therefore, once a suitable
value of p has been selected, the block length m can be chosen with-
out affecting the sensing or the sparse recovery stage. It determines
the dimensions of the matrix Y which is important for the rank esti-
mation step that is used to find ]t\f]le sparsity order. More specifically,

Vi—m

Y is of size mx B, where B = -+ 1. To maximize the size of Y,



we can choose p such that m ~ B, which leads to m ~ % There-

M+p
p+1

fore, we propose to select m as the integer value closest to such
that M —m divides p.

The second parameter we can adjust is the block advance p,
which controls the amount of overlap between adjacent blocks (equal
to m — p samples). The smaller p is chosen, the more we reuse el-
ements of y which results in a larger overall matrix Y. This has
a positive effect on the sparsity order estimation step and it allows
to estimate larger values of K since K < Kmax = min(m,B) -1

where B = Mfm + 1. For maximum overlap (p = 1), this bound

is maximized and becomes Kax = % — 1 while in the case of no

overlap (p = m = \/M) we have Kpax = VM - 1. On the other
hand, a larger overlap leads to a reduced flexibility in the sensing
matrix design since a growing part of ® has to obey the Vander-
monde scaling law shown in Theorem 2. As shown in Section 3, this
has a negative impact on the coherence of ®. Therefore, there is a
fundamental trade-off between the performance of the sparsity order
estimation and the performance of the sparse recovery step. How-
ever, note that we consider a system where the measurement matrix
® can be adapted at will. This allows to switch between measure-
ment matrices designed for the two different purposes: a “probing”
matrix which is optimized for the sparsity order estimation step (us-
ing a small value of p, e.g., p = 1), and a measurement matrix, which
is optimized to the recovery stage (using a larger value of p, e.g.,
p=m).

4.2. A link to multilinear algebra

Beyond enabling the sparsity order estimation for a single snap-
shot via rank estimation, the proposed Khatri-Rao design for the
measurement matrix has a strong link to multilinear algebra. In
particular, using a Khatri-Rao structured measurement matrix al-
lows to rearrange the observed data in form of a tensor that has (in
the noise-free case) a rank-K Canonical Polyadic Decomposition
(CPD) [14]. In fact, there are multiple special cases of the proposed
designs where such tensors occur, which we would like to list here.
For simplicity, let us assume that the parameters p and m are chosen
such that p divides M and m.

Firstly, in the case of overlapping blocks we have shown in The-
orem 2 that Y = (C% o @) - diag{s} - CF € C™ . This matrix
can be reshaped into an m x p x B tensor ) which obeys

y =I3yN X1 C% X9 @0 X3 (CB dlag{s})
=I5k x1 Cm g x2 o,k x3 (Cp,x -diag{sx}). (14)

where Z3 ), is the p x p x p identity tensor. Moreover, C% k> Po,x,
and Cp, i contain only the K columns corresponding to the support
(i.e., the non-zero elements of of s). Obviously, (14) is a rank-K
CPD which shows that Y is rank K.

Secondly, in a case where we do have 7" > 1 linearly independent
snapshots accordingto Y = ® - X, where Y ¢ CcMxT x e CNXT
is row-sparse and ® = C ¢ ®, applying the proposed measurement
matrix design allows to reshape the given M x T' observation matrix
Y into a B x p x T tensor ) where B = %. Note that this corre-
sponds to the operation we perform to y for non-overlapping blocks,
i.e., m = p. The resulting tensor can be expressed as

YV =Tsn x1 C xy®gx3 8" =Tz i x1 C x2 Pox x3 Sir,

where, as above, S;T( contains only the columns of st correspond-
ing to the support (i.e., the non-zero rows of S).
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Thirdly, we can combine these two approaches for the case of
multiple snapshots and overlapping signals. In this case we trans-
form the M x T observations into a m x p x B x T tensor with
loading matrices given by Cm g, 0 1, C i, and Si.

Finally, we could also decompose ® into more than two matri-
ces,e.g., & =C190...0Cq o ®g which can then be reshaped into
a (G + 1)-dimensional tensor if we have a single snapshot and into
a (G + 2)-dimensional tensor in the multiple snapshot case.

Exploring the potential benefit of this rich multilinear structure
in our data is an aspect of future work. We see potential benefit
of it in an enhanced denoising, similar to the improvement tensor-
based subspace estimation schemes have brought for high-resolution
parameter estimation [15]. Moreover, the tensor structure can be
used to improve the sparsity order estimation step using tensor-based
model order estimation (based on, e.g., [16]). Finally, in the case that
the sensing matrix is (partially) unknown (e.g., in a distributed set-
ting), a CPD of the observed tensor ) could be computed to reveal it.
Note that connections between CS and tensors have been discussed
in slightly different contexts before, e.g., big low-rank tensors with
unknown factors [17] or tensors with specially structured “block-
sparse” cores [18].

5. NUMERICAL RESULTS

To demonstrate the single-snapshot sparsity order estimation based
on the proposed design, we perform a numerical experiment. We
consider the recovery of a K = 7-sparse vector s of length /N = 1000
from a single vector of observations y of length M = 256. We
compare three different strategies. Firstly, choosing m = p = 16
so that there is no overlap and thus ®¢ and C' can be chosen freely.
Secondly, setting p = 1 for maximum overlap, in which case ® needs
to be Vandermonde, where we set m = 128 to maximizes the size of
Y. Thirdly, as an intermediate case, p = 8 in which case m = 32
leads to the largest matrix Y and @ is composed of an 8 x 1000
Vandermonde matrix C' and an arbitrary 32 x 1000 matrix ®. For a
direct comparison, the size of the data matrix Y that is used for rank
estimation is 16 x 16 in the non-overlapping case, 128 x 129 in the
case p = 1, and 32 x 29 for p = 8.

The matrices that we can choose freely (C in the case of no
overlap and ® in all cases) are drawn from a zero-mean circularly
symmetric complex Gaussian (ZMCSCG) distribution. The K non-
zeros in the vector s are placed randomly and their values are given
by e’?* where @i ~ U[0,27). The additive noise m is also drawn
from a ZMCSCG distribution with variance Px. The SNR is defined

as SNR = 1/Px.
The sparsity order is estimated by applying existing model order
selection criteria to the the singular values 0;, 7 =1,2,...,16 of the

matrix Y € C™*Z . In particular, we consider Akaike’s Information
Criterion (AIC) [19] as well as the Empirical Threshold Test (ETT)
proposed in [3]. Figure 2 shows the estimated model order as a func-
tion of the SNR, averaged over 1500 Monte-Carlo trials. The result
demonstrates that the correct sparsity order can be identified from y,
provided the SNR is not too low. AIC suffers from the very small
sample support (which is assumed to be large in the original deriva-
tion), which is handled much better by the ETT. We also notice that
a larger amount of block overlap (a smaller value p) provides a better
sparsity order estimation performance. This is not surprising since
the size of the matrix Y used for the rank estimation step grows with
increasing block overlap. We also observe that ETT tends to over-
estimate the model order slightly for the case of maximum overlap.
However, this is not a critical issue since for the CS context, it is bet-
ter to overestimate (to have some head room) than to underestimate
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Estimated sparsity order K

Fig. 2. Estimated sparsity order K vs. the SNR for M = 256 and
K = 7. We compare three cases: p = 1, m = 128 (“max overlap”),
p=38,m =32 (“75 % overlap”) and p = m = 8 (“no overlap”).

(which can lead to a fatal breakdown of the CS recovery).

Figure 3 shows the probability of correct support estimation for
the same scenario, using the Orthogonal Matching Pursuit (OMP) al-
gorithm for the sparse recovery stage. In addition to the three scenar-
ios discussed above, the curve labeled “Reference” depicts the case
where an unstructured matrix @ is used for the measurement (which
does not allow the sparsity order estimation discussed in this paper).
We observe that larger overlaps lead to a degradation of the recov-
ery performance, which is expected due to the increase in the mutual
coherence (as discussed in Section 3). Interestingly, the Khatri-Rao
structured matrix @ in the non-overlapping case performs almost
identically to the unstructured matrix ® shown as a reference.

6. CONCLUSIONS

In this work we have investigated the problem of sparsity order es-
timation from a single data snapshot. We analytically show that a
specific Khatri-Rao design of the measurement matrix is a neces-
sary and a sufficient condition for the recovery of the linear inde-
pendence in a single vector of observations. The sparsity order can
then be estimated as the effective rank of a matrix constructed by
concatenating blocks of this observation vector. We analyze the in-
fluence of the parameters of the proposed Khatri-Rao design on the
resulting matrix coherence and numerically show the trade-off be-
tween the achievable estimation and recovery performance. Addi-
tionally, we show that the proposed design introduces certain multi-
linear structures into the data. These could possibly be exploited by
applying tensor-based signal processing (e.g., tensor-based denois-
ing and model order estimation).
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