247 research outputs found

    Identification of signaling pathways in early mammary gland development by mouse genetics

    Get PDF
    The mammary gland develops as an appendage of the ectoderm. The prenatal stage of mammary development is hormone independent and is regulated by sequential and reciprocal signaling between the epithelium and the mesenchyme. A number of recent studies using human and mouse genetics, in particular targeted gene deletion and transgenic expression, have identified some of the signals that control specific steps in development. This process involves cell specification and proliferation, reciprocal tissue interactions and cell migration. Since some of these events are recapitulated during tumorigenesis, an understanding of these signaling pathways may contribute to the development of targeted therapies and novel drugs

    Self-organizing & stochastic behaviors during the regeneration of hair stem cells

    Get PDF
    Stem cells cycle through active and quiescent states. Large populations of stem cells in an organ may cycle randomly or in a coordinated manner. Although stem cell cycling within single hair follicles has been studied, less is known about regenerative behavior in a hair follicle population. By combining predictive mathematical modeling with in vivo studies in mice and rabbits, we show that a follicle progresses through cycling stages by continuous integration of inputs from intrinsic follicular and extrinsic environmental signals based on universal patterning principles. Signaling from the WNT/bone morphogenetic protein activator/inhibitor pair is coopted to mediate interactions among follicles in the population. This regenerative strategy is robust and versatile because relative activator/inhibitor strengths can be modulated easily, adapting the organism to different physiological and evolutionary needs

    β-catenin Initiates Tooth Neogenesis in Adult Rodent Incisors

    Get PDF
    β-catenin signaling is required for embryonic tooth morphogenesis and promotes continuous tooth development when activated in embryos. To determine whether activation of this pathway in the adult oral cavity could promote tooth development, we induced mutation of epithelial β-catenin to a stabilized form in adult mice. This caused increased proliferation of the incisor tooth cervical loop, outpouching of incisor epithelium, abnormal morphology of the epithelial-mesenchymal junction, and enhanced expression of genes associated with embryonic tooth development. Ectopic dental-like structures were formed from the incisor region following implantation into immunodeficient mice. Thus, forced activation of β-catenin signaling can initiate an embryonic-like program of tooth development in adult rodent incisor teeth

    Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis

    Get PDF
    Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFb signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers

    CD44 Upregulation in E-Cadherin-Negative Esophageal Cancers Results in Cell Invasion

    Get PDF
    E-cadherin is frequently lost during epithelial-mesenchymal transition and the progression of epithelial tumorigenesis. We found a marker of epithelial-mesenchymal transition, CD44, upregulated in response to functional loss of E-cadherin in esophageal cell lines and cancer. Loss of E-cadherin expression correlates with increased expression of CD44 standard isoform. Using an organotypic reconstruct model, we show increased CD44 expression in areas of cell invasion is associated with MMP-9 at the leading edge. Moreover, Activin A increases cell invasion through CD44 upregulation after E-cadherin loss. Taken together, our results provide functional evidence of CD44 upregulation in esophageal cancer invasion

    Inducible deletion of epidermal Dicer and Drosha reveals multiple functions for miRNAs in postnatal skin

    Get PDF
    MicroRNAs (miRNAs) regulate the expression of many mammalian genes and play key roles in embryonic hair follicle development; however, little is known of their functions in postnatal hair growth. We compared the effects of deleting the essential miRNA biogenesis enzymes Drosha and Dicer in mouse skin epithelial cells at successive postnatal time points. Deletion of either Drosha or Dicer during an established growth phase (anagen) caused failure of hair follicles to enter a normal catagen regression phase, eventual follicular degradation and stem cell loss. Deletion of Drosha or Dicer in resting phase follicles did not affect follicular structure or epithelial stem cell maintenance, and stimulation of anagen by hair plucking caused follicular proliferation and formation of a primitive transient amplifying matrix population. However, mutant matrix cells exhibited apoptosis and DNA damage and hair follicles rapidly degraded. Hair follicle defects at early time points post-deletion occurred in the absence of inflammation, but a dermal inflammatory response and hyperproliferation of interfollicular epidermis accompanied subsequent hair follicle degradation. These data reveal multiple functions for Drosha and Dicer in suppressing DNA damage in rapidly proliferating follicular matrix cells, facilitating catagen and maintaining follicular structures and their associated stem cells. Although Drosha and Dicer each possess independent non-miRNA-related functions, the similarity in phenotypes of the inducible epidermal Drosha and Dicer mutants indicates that these defects result primarily from failure of miRNA processing. Consistent with this, Dicer deletion resulted in the upregulation of multiple direct targets of the highly expressed epithelial miRNA miR-205. © 2012. Published by The Company of Biologists Ltd

    MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists

    Get PDF
    MicroRNA-mediated post-transcriptional regulation plays key roles in stem cell self-renewal and tumorigenesis. However, the in vivo functions of specific microRNAs in controlling mammary stem cell (MaSC) activity and breast cancer formation remain poorly understood. Here we show that miR-31 is highly expressed in MaSC-enriched mammary basal cell population and in mammary tumors, and is regulated by NF-κB signaling. We demonstrate that miR-31 promotes mammary epithelial proliferation and MaSC expansion at the expense of differentiation in vivo. Loss of miR-31 compromises mammary tumor growth, reduces the number of cancer stem cells, as well as decreases tumor-initiating ability and metastasis to the lung, supporting its pro-oncogenic function. MiR-31 modulates multiple signaling pathways, including Prlr/Stat5, TGFβ and Wnt/β-catenin. Particularly, it activates Wnt/β-catenin signaling by directly targeting Wnt antagonists, including Dkk1. Importantly, Dkk1 overexpression partially rescues miR31-induced mammary defects. Together, these findings identify miR-31 as the key regulator of MaSC activity and breast tumorigenesis

    IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    Full text link
    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2, including the aim of instrumenting a 10 km310\,\mathrm{km}^3 volume of clear glacial ice at the South Pole to deliver substantial increases in the astrophysical neutrino sample for all flavors. A detector of this size would have a rich physics program with the goal to resolve the sources of these astrophysical neutrinos, discover GZK neutrinos, and be a leading observatory in future multi-messenger astronomy programs.Comment: 20 pages, 12 figures. Address correspondence to: E. Blaufuss, F. Halzen, C. Kopper (Changed to add one missing author, no other changes from initial version.

    The Vitamin D Receptor Is a Wnt Effector that Controls Hair Follicle Differentiation and Specifies Tumor Type in Adult Epidermis

    Get PDF
    We have investigated how Wnt and vitamin D receptor signals regulate epidermal differentiation. Many epidermal genes induced by β-catenin, including the stem cell marker keratin 15, contain vitamin D response elements (VDREs) and several are induced independently of TCF/Lef. The VDR is required for β-catenin induced hair follicle formation in adult epidermis, and the vitamin D analog EB1089 synergises with β-catenin to stimulate hair differentiation. Human trichofolliculomas (hair follicle tumours) are characterized by high nuclear β-catenin and VDR, whereas infiltrative basal cell carcinomas (BCCs) have high β-catenin and low VDR levels. In mice, EB1089 prevents β-catenin induced trichofolliculomas, while in the absence of VDR β-catenin induces tumours resembling BCCs. We conclude that VDR is a TCF/Lef-independent transcriptional effector of the Wnt pathway and that vitamin D analogues have therapeutic potential in tumors with inappropriate activation of Wnt signalling
    • …
    corecore