41 research outputs found

    An Allosteric Pathway in Copper, Zinc Superoxide Dismutase Unravels the Molecular Mechanism of the G93A Amyotrophic Lateral Sclerosis-Linked Mutation

    Get PDF
    Several different mutations of the protein copper, zinc superoxide dismutase (SOD1) produce the neurodegenerative disorder amyotrophic lateral sclerosis (ALS). The molecular mechanism by which the diverse mutations converge to a similar pathology is currently unknown. The electrostatic loop (EL) of SOD1 is known to be affected in all of the studied ALS-linked mutations of SOD1. In this work, we employ a multiscale simulation approach to show that this perturbation corresponds to an increased probability of the EL detaching from its native position, exposing the metal site of the protein to water. From extensive atomistic and coarse-grained molecular dynamics (MD) simulations, we identify an allosteric pathway that explains the action of the distant G93A mutation on the EL. Finally, we employ quantum mechanics/molecular mechanics MD simulations to show that the opening of the EL decreases the Zn(II) affinity of the protein. As the loss of Zn(II) is at the center of several proposed pathogenic mechanisms in SOD1-linked ALS, the structural effect identified here not only is in agreement with the experimental data but also places the opening of the electrostatic loop as the possible main pathogenic effect for a significant number of ALS-linked SOD1 mutations

    On the Mechanism of the Reactivity of 1,3-Dialkylimidazolium Salts under Basic to Acidic Conditions : A Combined Kinetic and Computational Study

    Get PDF
    Comprehensive spectroscopic kinetic studies illustrate an alternative mechanism for the traditional free-carbene intermediated H/D exchange reaction of 1,3-dialkylimidazolium salts under neutral (D2O) and acidic conditions (DCl/D2O 35wt% solution). The deuteration of high purity [bmim]Cl in D2O is studied at different temperatures, in absence of catalyst or impurities, to yield an activation energy. DFT transition-state modelling, of a small water cluster and [bmim] cation, also yields an activation energy which strongly supports the proposed mechanism. The presence of basic impurities are shown to significantly enhance the exchange reaction, which brings into question the need for further analysis of technical purities of ionic liquids and the implications for a wide range of chemical reactions in such media.Peer reviewe

    Design and Synthesis of Potent in Vitro and in Vivo Anticancer Agents Based on 1-(3′,4′,5′-Trimethoxyphenyl)-2-Aryl-1H-Imidazole

    Get PDF
    A novel series of tubulin polymerization inhibitors, based on the 1-(3',4',5'-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold and designed as cis-restricted combretastatin A-4 analogues, was synthesized with the goal of evaluating the effects of various patterns of substitution on the phenyl at the 2-position of the imidazole ring on biological activity. A chloro and ethoxy group at the meta- and para-positions, respectively, produced the most active compound in the series (4o), with IC50 values of 0.4-3.8 nM against a panel of seven cancer cell lines. Except in HL-60 cells, 4o had greater antiproliferative than CA-4, indicating that the 3'-chloro-4'-ethoxyphenyl moiety was a good surrogate for the CA-4 B-ring. Experiments carried out in a mouse syngenic model demonstrated high antitumor activity of 4o, which significantly reduced the tumor mass at a dose thirty times lower than that required for CA-4P, which was used as a reference compound. Altogether, our findings suggest that 4o is a promising anticancer drug candidate that warrants further preclinical evaluation

    The antioxidant N-acetylcysteine prevents the mitochondrial fragmentation induced by soluble amyloid-β peptide oligomers

    No full text
    Background: Soluble amyloid-β peptide oligomers (AβOs), which are centrally involved in the pathogenesis of Alzheimer's disease, trigger Ca 2+ influx through N-methyl-D-aspartate receptors and stimulate reactive oxygen species generation in primary hippocampal neurons. We have previously reported that AβOs promote Ca 2+ release mediated by ryanodine receptors (RyR), which in turn triggers mitochondrial fragmentation. We have also reported that the antioxidant N-acetylcysteine (NAC) prevents AβOs-induced Ca 2+ signal generation. Objectives: To determine if RyR-mediated Ca 2+ release activated by the specific agonist 4-chloro-m-cresol (4-CMC) induces fragmentation of the mitochondrial network, and to ascertain if NAC prevents the mitochondrial fragmentation induced by AβOs and/or 4-CMC. Methods: Mature primary rat hippocampal neurons were incubated for 24 h with sublethal concentrations of AβOs (500 nM) or for 1-3 h with 4-CMC (0.5-1 mM), ±10 mM NAC. Mitochondrial morphology was assesse

    Study of differences in the VEGFR2 inhibitory activities between semaxanib and SU5205 using 3D-QSAR, docking, and molecular dynamics simulations

    No full text
    Caballero, J (reprint author), Univ Talca, Ctr Bioinformat & Simulac Mol, 2 Norte 685,Casilla 721, Talca, Chile.Semaxanib (SU5416) and 3[4'-fluorobenzylidene]indolin-2-one (SU5205) are structurally similar drugs that are able to inhibit vascular endothelial growth factor receptor-2 (VEGFR2), but the former is 87 times more effective than the latter. Previously, SU5205 was used as a radiolabelled inhibitor (as surrogate for SU5416) and a radiotracer for positron emission tomography (PET) imaging, but the compound exhibited poor stability and only a moderate IC50 toward VEGFR2. In the current work, the relationship between the structure and activity of these drugs as VEGFR2 inhibitors was studied using 3D-QSAR, docking and molecular dynamics (MD) simulations. First, comparative molecular field analysis (CoMFA) was performed using 48 2-indolinone derivatives and their VEGFR2 inhibitory activities. The best CoMFA model was carried out over a training set including 40 compounds, and it included steric and electrostatic fields. In addition, this model gave satisfactory cross-validation results and adequately predicted 8 compounds contained in the test set. The plots of the CoMFA fields could explain the structural differences between semaxanib and SU5205. Docking and molecular dynamics simulations showed that both molecules have the same orientation and dynamics inside the VEGFR2 active site. However, the hydrophobic pocket of VEGFR2 was more exposed to the solvent media when it was complexed with SU5205. An energetic analysis, including Embrace and MM-GBSA calculations, revealed that the potency of ligand binding is governed by van der Waals contacts. (C) 2011 Elsevier Inc. All rights reserved

    Erratum: The Antioxidant N-Acetylcysteine Prevents the Mitochondrial Fragmentation Induced by Soluble Amyloid-F Peptide Oligomers

    No full text
    <i>Background:</i> Soluble amyloid-F peptide oligomers (AFOs), which are centrally involved in the pathogenesis of Alzheimer’s disease, trigger Ca<sup>2+</sup> influx through N-methyl-<i>D</i>-aspartate receptors and stimulate reactive oxygen species generation in primary hippocampal neurons. We have previously reported that AFOs promote Ca<sup>2+</sup> release mediated by ryanodine receptors (RyR), which in turn triggers mitochondrial fragmentation. We have also reported that the antioxidant N-acetylcysteine (NAC) prevents AFOs-induced Ca<sup>2+</sup> signal generation. <i>Objectives:</i> To determine if RyR-mediated Ca<sup>2+</sup> release activated by the specific agonist 4-chloro-m-cresol (4-CMC) induces fragmentation of the mitochondrial network, and to ascertain if NAC prevents the mitochondrial fragmentation induced by AFOs and/or 4-CMC. <i>Methods:</i> Mature primary rat hippocampal neurons were incubated for 24 h with sublethal concentrations of AFOs (500 n<i>M</i>) or for 1–3 h with 4-CMC (0.5–1 m<i>M</i>), w10 m<i>M</i> NAC. Mitochondrial morphology was assessed by confocal microscopy of fixed neurons stained with anti-mHsp70. Intracellular Ca<sup>2+</sup> levels were determined by time series microscopy of neurons preloaded with Fluo-4 AM. <i>Results:</i> Preincubation of neurons for 30 min with NAC prevented the mitochondrial fragmentation induced by AFOs or 4-CMC. In addition, we confirmed that preincubation with NAC abolished the stimulation of RyR-mediated Ca<sup>2+</sup> release induced by AFOs or 4-CMC. <i>Conclusion:</i> The present results strongly suggest that the general antioxidant NAC prevents AFO-induced mitochondrial fragmentation by preventing RyR-mediated Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release. Copyright i 2012 S. Karger AG, Base
    corecore