250 research outputs found

    Insect chromosomes preparing methods for genetic researches

    Get PDF
    Cytogenetics are almost always based on the examination of the fixed mitotic chromosomes during the analyses of metaphase. During this phase of the cycle of cells, the DNA is folded up and chromatin is strongly condensed. The relative position of the centromere is constant, which means that the ratio of the lengths of the two arms is constant for each chromosome. Importantly, each chromosome displays a unique banding pattern. Different staining methods showed the banding pattern (g band), centromere position (c band), cytophotometric estimation and specific DNA regions (FISH). This study aims to show the important chromosome staining methods

    Hymenoptera of Nide province: Studies on Sphecidae fauna

    Get PDF
    The present study is based on 1240 specimens obtained from the field studies in the vicinity of Ankara province in Turkey between the years of 2006 - 2008. In fauna studies carried out in Nide province between May 2006 - October 2008, the specimens of Sphecinae Latreille, 1802, PempheredoninaeDahlbom, 1835, Astatianae Lepeletier, 1845, Crabroninae Latreille, 1802, Bembicinae Latreille, 1802, Philanthinae Latreille, 1802 sub-families belonging to Sphecidae family were collected. 52 of the collected specimens are new records for Nide province. Astata pontica Pulawski, 1958 species is anew record for Turkey

    Quantal effects on spinodal instabilities in charge asymmetric nuclear matter

    Get PDF
    Quantal effects on growth of spinodal instabilities in charge asymmetric nuclear matter are investigated in the framework of a stochastic mean field approach. Due to quantal effects, in both symmetric and asymmetric matter, dominant unstable modes shift towards longer wavelengths and modes with wave numbers larger than the Fermi momentum are strongly suppressed. As a result of quantum statistical effects, in particular at lower temperatures, magnitude of density fluctuations grows larger than those calculated in semi-classical approximation

    Quantal description of nucleon exchange in a stochastic mean-field approach

    Get PDF
    The nucleon exchange mechanism is investigated in central collisions of symmetric heavy ions in the basis of the stochastic mean-field approach. Quantal diffusion coefficients for nucleon exchange are calculated by including non-Markovian effects and shell structure. Variances of fragment mass distributions are calculated in central collisions of Ca-40 + Ca-40, Ca-48 + Ca-48, and N-56 i+ Ni-56 systems

    Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    Full text link
    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.Comment: 18 pages, 21 figure

    Common denominators in the immunobiology of IgG4 autoimmune diseases: What do glomerulonephritis, pemphigus vulgaris, myasthenia gravis, thrombotic thrombocytopenic purpura and autoimmune encephalitis have in common?

    Get PDF
    IgG4 autoimmune diseases (IgG4-AID) are an emerging group of autoimmune diseases that are caused by pathogenic autoantibodies of the IgG4 subclass. It has only recently been appreciated, that members of this group share relevant immunobiological and therapeutic aspects even though different antigens, tissues and organs are affected: glomerulonephritis (kidney), pemphigus vulgaris (skin), thrombotic thrombocytopenic purpura (hematologic system) muscle-specific kinase (MuSK) in myasthenia gravis (peripheral nervous system) and autoimmune encephalitis (central nervous system) to give some examples. In all these diseases, patients’ IgG4 subclass autoantibodies block protein-protein interactions instead of causing complement mediated tissue injury, patients respond favorably to rituximab and share a genetic predisposition: at least five HLA class II genes have been reported in individual studies to be associated with several different IgG4-AID. This suggests a role for the HLA class II region and specifically the DRβ1 chain for aberrant priming of autoreactive T-cells toward a chronic immune response skewed toward the production of IgG4 subclass autoantibodies. The aim of this review is to provide an update on findings arguing for a common pathogenic mechanism in IgG4-AID in general and to provide hypotheses about the role of distinct HLA haplotypes, T-cells and cytokines in IgG4-AID

    Catching up with Method and Process Practice: An Industry-Informed Baseline for Researchers

    Get PDF
    Software development methods are usually not applied by the book.companies are under pressure to continuously deploy software products that meet market needs and stakeholders\u27 requests. To implement efficient and effective development processes, companies utilize multiple frameworks, methods and practices, and combine these into hybrid methods. A common combination contains a rich management framework to organize and steer projects complemented with a number of smaller practices providing the development teams with tools to complete their tasks. In this paper, based on 732 data points collected through an international survey, we study the software development process use in practice. Our results show that 76.8% of the companies implement hybrid methods.company size as well as the strategy in devising and evolving hybrid methods affect the suitability of the chosen process to reach company or project goals. Our findings show that companies that combine planned improvement programs with process evolution can increase their process\u27 suitability by up to 5%

    Manipulating multiple sequence alignments via MaM and WebMaM

    Get PDF
    MaM is a software tool that processes and manipulates multiple alignments of genomic sequence. MaM computes the exact location of common repeat elements, exons and unique regions within aligned genomics sequences using a variety of user identified programs, databases and/or tables. The program can extract subalignments, corresponding to these various regions of DNA to be analyzed independently or in conjunction with other elements of genomic DNA. Graphical displays further allow an assessment of sequence variation throughout these different regions of the aligned sequence, providing separate displays for their repeat, non-repeat and coding portions of genomic DNA. The program should facilitate the phylogenetic analysis and processing of different portions of genomic sequence as part of large-scale sequencing efforts. MaM source code is freely available for non-commercial use at ; and the web interface WebMaM is hosted at

    Simulation of High Conversion Efficiency and Open-circuit Voltages Of {\alpha}-si/poly-silicon Solar Cell

    Full text link
    The P+ {\alpha}-Si /N+ polycrystalline solar cell is molded using the AMPS-1D device simulator to explore the new high efficiency thin film poly-silicon solar cell. In order to analyze the characteristics of this device and the thickness of N+ poly-silicon, we consider the impurity concentration in the N+ poly-silicon layer and the work function of transparent conductive oxide (TCO) in front contact in the calculation. The thickness of N+ poly-silicon has little impact on the device when the thickness varies from 20 {\mu}m to 300 {\mu}m. The effects of impurity concentration in polycrystalline are analyzed. The conclusion is drawn that the open-circuit voltage (Voc) of P+ {\alpha}-Si /N+ polycrystalline solar cell is very high, reaching 752 mV, and the conversion efficiency reaches 9.44%. Therefore, based on the above optimum parameters the study on the device formed by P+ {\alpha}-Si/N+ poly-silicon is significant in exploring the high efficiency poly-silicon solar cell.Comment: 8 pages 6figures, 1 table

    Signatures of granular microstructure in dense shear flows

    Full text link
    Granular materials react to shear stresses differently than do ordinary fluids. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands: narrow zones containing large relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5]. Since shear bands mark areas of flow, material failure and energy dissipation, they play a crucial role for many industrial, civil engineering and geophysical processes[6]. They also appear in related contexts, such as in lubricating fluids confined to ultra-thin molecular layers[7]. Detailed information on motion within a shear band in a three-dimensional geometry, including the degree of particle rotation and inter-particle slip, is lacking. Similarly, only little is known about how properties of the individual grains - their microstructure - affect movement in densely packed material[5]. Combining magnetic resonance imaging, x-ray tomography, and high-speed video particle tracking, we obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.Comment: 5 pages, incl. 4 figure
    • …
    corecore