250 research outputs found
Insect chromosomes preparing methods for genetic researches
Cytogenetics are almost always based on the examination of the fixed mitotic chromosomes during the analyses of metaphase. During this phase of the cycle of cells, the DNA is folded up and chromatin is strongly condensed. The relative position of the centromere is constant, which means that the ratio of the lengths of the two arms is constant for each chromosome. Importantly, each chromosome displays a unique banding pattern. Different staining methods showed the banding pattern (g band), centromere position (c band), cytophotometric estimation and specific DNA regions (FISH). This study aims to show the important chromosome staining methods
Hymenoptera of Nide province: Studies on Sphecidae fauna
The present study is based on 1240 specimens obtained from the field studies in the vicinity of Ankara province in Turkey between the years of 2006 - 2008. In fauna studies carried out in Nide province between May 2006 - October 2008, the specimens of Sphecinae Latreille, 1802, PempheredoninaeDahlbom, 1835, Astatianae Lepeletier, 1845, Crabroninae Latreille, 1802, Bembicinae Latreille, 1802, Philanthinae Latreille, 1802 sub-families belonging to Sphecidae family were collected. 52 of the collected specimens are new records for Nide province. Astata pontica Pulawski, 1958 species is anew record for Turkey
Quantal effects on spinodal instabilities in charge asymmetric nuclear matter
Quantal effects on growth of spinodal instabilities in charge asymmetric nuclear matter are investigated in the framework of a stochastic mean field approach. Due to quantal effects, in both symmetric and asymmetric matter, dominant unstable modes shift towards longer wavelengths and modes with wave numbers larger than the Fermi momentum are strongly suppressed. As a result of quantum statistical effects, in particular at lower temperatures, magnitude of density fluctuations grows larger than those calculated in semi-classical approximation
Quantal description of nucleon exchange in a stochastic mean-field approach
The nucleon exchange mechanism is investigated in central collisions of symmetric heavy ions in the basis of the stochastic mean-field approach. Quantal diffusion coefficients for nucleon exchange are calculated by including non-Markovian effects and shell structure. Variances of fragment mass distributions are calculated in central collisions of Ca-40 + Ca-40, Ca-48 + Ca-48, and N-56 i+ Ni-56 systems
Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor
Pebble-bed nuclear reactor technology, which is currently being revived
around the world, raises fundamental questions about dense granular flow in
silos. A typical reactor core is composed of graphite fuel pebbles, which drain
very slowly in a continuous refueling process. Pebble flow is poorly understood
and not easily accessible to experiments, and yet it has a major impact on
reactor physics. To address this problem, we perform full-scale,
discrete-element simulations in realistic geometries, with up to 440,000
frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel
of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60
degrees. We also simulate a bidisperse core with a dynamic central column of
smaller graphite moderator pebbles and show that little mixing occurs down to a
1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local
ordering and porosity (from Voronoi volumes), the residence-time distribution,
and the effects of wall friction and discuss implications for reactor design
and the basic physics of granular flow.Comment: 18 pages, 21 figure
Common denominators in the immunobiology of IgG4 autoimmune diseases: What do glomerulonephritis, pemphigus vulgaris, myasthenia gravis, thrombotic thrombocytopenic purpura and autoimmune encephalitis have in common?
IgG4 autoimmune diseases (IgG4-AID) are an emerging group of autoimmune diseases that are caused by pathogenic autoantibodies of the IgG4 subclass. It has only recently been appreciated, that members of this group share relevant immunobiological and therapeutic aspects even though different antigens, tissues and organs are affected: glomerulonephritis (kidney), pemphigus vulgaris (skin), thrombotic thrombocytopenic purpura (hematologic system) muscle-specific kinase (MuSK) in myasthenia gravis (peripheral nervous system) and autoimmune encephalitis (central nervous system) to give some examples. In all these diseases, patients’ IgG4 subclass autoantibodies block protein-protein interactions instead of causing complement mediated tissue injury, patients respond favorably to rituximab and share a genetic predisposition: at least five HLA class II genes have been reported in individual studies to be associated with several different IgG4-AID. This suggests a role for the HLA class II region and specifically the DRβ1 chain for aberrant priming of autoreactive T-cells toward a chronic immune response skewed toward the production of IgG4 subclass autoantibodies. The aim of this review is to provide an update on findings arguing for a common pathogenic mechanism in IgG4-AID in general and to provide hypotheses about the role of distinct HLA haplotypes, T-cells and cytokines in IgG4-AID
Catching up with Method and Process Practice: An Industry-Informed Baseline for Researchers
Software development methods are usually not applied by the book.companies are under pressure to continuously deploy software products that meet market needs and stakeholders\u27 requests. To implement efficient and effective development processes, companies utilize multiple frameworks, methods and practices, and combine these into hybrid methods. A common combination contains a rich management framework to organize and steer projects complemented with a number of smaller practices providing the development teams with tools to complete their tasks. In this paper, based on 732 data points collected through an international survey, we study the software development process use in practice. Our results show that 76.8% of the companies implement hybrid methods.company size as well as the strategy in devising and evolving hybrid methods affect the suitability of the chosen process to reach company or project goals. Our findings show that companies that combine planned improvement programs with process evolution can increase their process\u27 suitability by up to 5%
Manipulating multiple sequence alignments via MaM and WebMaM
MaM is a software tool that processes and manipulates multiple alignments of genomic sequence. MaM computes the exact location of common repeat elements, exons and unique regions within aligned genomics sequences using a variety of user identified programs, databases and/or tables. The program can extract subalignments, corresponding to these various regions of DNA to be analyzed independently or in conjunction with other elements of genomic DNA. Graphical displays further allow an assessment of sequence variation throughout these different regions of the aligned sequence, providing separate displays for their repeat, non-repeat and coding portions of genomic DNA. The program should facilitate the phylogenetic analysis and processing of different portions of genomic sequence as part of large-scale sequencing efforts. MaM source code is freely available for non-commercial use at ; and the web interface WebMaM is hosted at
Simulation of High Conversion Efficiency and Open-circuit Voltages Of {\alpha}-si/poly-silicon Solar Cell
The P+ {\alpha}-Si /N+ polycrystalline solar cell is molded using the AMPS-1D
device simulator to explore the new high efficiency thin film poly-silicon
solar cell. In order to analyze the characteristics of this device and the
thickness of N+ poly-silicon, we consider the impurity concentration in the N+
poly-silicon layer and the work function of transparent conductive oxide (TCO)
in front contact in the calculation. The thickness of N+ poly-silicon has
little impact on the device when the thickness varies from 20 {\mu}m to 300
{\mu}m. The effects of impurity concentration in polycrystalline are analyzed.
The conclusion is drawn that the open-circuit voltage (Voc) of P+ {\alpha}-Si
/N+ polycrystalline solar cell is very high, reaching 752 mV, and the
conversion efficiency reaches 9.44%. Therefore, based on the above optimum
parameters the study on the device formed by P+ {\alpha}-Si/N+ poly-silicon is
significant in exploring the high efficiency poly-silicon solar cell.Comment: 8 pages 6figures, 1 table
Signatures of granular microstructure in dense shear flows
Granular materials react to shear stresses differently than do ordinary
fluids. Rather than deforming uniformly, materials such as dry sand or
cohesionless powders develop shear bands: narrow zones containing large
relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5].
Since shear bands mark areas of flow, material failure and energy dissipation,
they play a crucial role for many industrial, civil engineering and geophysical
processes[6]. They also appear in related contexts, such as in lubricating
fluids confined to ultra-thin molecular layers[7]. Detailed information on
motion within a shear band in a three-dimensional geometry, including the
degree of particle rotation and inter-particle slip, is lacking. Similarly,
only little is known about how properties of the individual grains - their
microstructure - affect movement in densely packed material[5]. Combining
magnetic resonance imaging, x-ray tomography, and high-speed video particle
tracking, we obtain the local steady-state particle velocity, rotation and
packing density for shear flow in a three-dimensional Couette geometry. We find
that key characteristics of the granular microstructure determine the shape of
the velocity profile.Comment: 5 pages, incl. 4 figure
- …