397 research outputs found

    Complex magnetic behaviour of Ho3Cu4X4 compounds X Si and Sn

    Get PDF

    Anisotropic magnetization, specific heat and resistivity of RFe2Ge2 single crystals

    Get PDF
    We have grown RFe2Ge2 single crystals for R = Y and ten members of the lanthanide series (Pr, Nd, Sm, Gd-Tm, Lu) using Sn flux as the solvent. The method yields clean, high quality crystal plates as evidenced by residual resistivities and RRR values in the range of 3-12 uOhm cm and 20-90 respectively. The crystals are also virtually free of magnetic impurities or secondary phases, allowing the study of the intrinsic anisotropic magnetic behavior of each compound. Characterization was made with X-Ray diffraction, and temperature and field dependent magnetization, specific heat and resistivity. Very strong anisotropies arising mostly from CEF effects were observed for all magnetic rare earths except Gd. Antiferromagnetic ordering occurred at temperatures between 16.5 K (Nd) and 1.1 K (Ho) that roughly scale with the de Gennes factor for the heavy rare earths. For some members there is also a lower temperature transition associated with changes in the magnetic structure. Tm did not order down to 0.4 K, and appears to be a van Vleck paramagnet. All members which ordered above 2 K showed a metamagnetic transition at 2 K for fields below 70 kOe. The calculated effective moments per rare earth atom are close to the expected free ion values of R^3+ except for Sm which displays anomalous behavior in the paramagnetic state. The non-magnetic members of this series (Y, Lu) are characterized by an unusually large electronic specific heat coefficient (gamma ~ 60 mJ/mol K^2) and temperature-independent susceptibility term (chi_0 ~ 0.003 emu/mol), indicative of a relatively large density of states at the Fermi surface.Comment: 34 pages, 13 figures, 1 table, submitted to J. Magn. Magn. Mate

    Ferromagnetic feature from Mn near room temperature in the fine particles of GdMn2Ge2 and TbMn2Ge2

    Full text link
    The magnetization behaviors of GdMn2Ge2 and TbMn2Ge2 in the bulk and in the fine particles obtained by high-energy ball-milling are compared. Pronounced modificayions in the spontaneous, remnent and high-field magnetization in the fine particle form, attributable to Mn are observed. The results indicate that the antiferromagnetism of Mn sub-lattice known for the bulk form in the range 100-300 K gets weakened in favor of ferromagnetism in the fine particles. On the basis of this observation, we infer that there are other factors like size (and possibly defects) also play a role to decide the exact nature of magnetic ordering of Mn in this ternary family of compounds, contrasting the traditionally held view that the basal plane Mn-Mn distance is the crucial controlling parameter.Comment: Communicated for publication on 2nd January 201

    Evidence of momentum dependent hybridization in Ce2Co0.8Si3.2

    Full text link
    We studied the electronic structure of the Kondo lattice system Ce2Co0.8Si3.2 by angle-resolved photoemission spectroscopy (ARPES). The spectra obtained below the coherence temperature consist of a Kondo resonance, its spin-orbit partner and a number of dispersing bands. The quasiparticle weight related to the Kondo peak depends strongly on Fermi vectors associated with bulk bands. This indicates a highly anisotropic hybridization between conduction band and 4f electrons - V_{cf} in Ce2Co0.8Si3.2.Comment: 6 page

    Direct evidence for the magnetic ordering of Nd ions in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering

    Full text link
    We have investigated the low energy nuclear spin excitations in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering. Previous neutron diffraction investigations gave ambiguous results about Nd magnetic ordering at low temperatures. The present element-specific technique gave direct evidence for the magnetic ordering of Nd ions. We found considerable difference in the process of the Nd magnetic ordering at low temperature in NdMn2_2Si2_2 and NdMn2_2Ge2_2. Our results are consistent with those of magnetization and recent neutron diffraction measurements

    4f spin density in the reentrant ferromagnet SmMn2Ge2

    Full text link
    The spin contribution to the magnetic moment in SmMn2Ge2 has been measured by magnetic Compton scattering in both the low and high temperature ferromagnetic phases. At low temperature, the Sm site is shown to possess a large 4f spin moment of 3.4 +/- 0.1 Bohr magnetons, aligned antiparallel to the total magnetic moment. At high temperature, the data show conclusively that ordered magnetic moments are present on the samarium site.Comment: 5 pages, 2 figures, transferred from PRL to PRB (Rapid Comm.

    Magnetocrystalline anisotropy in RAu_{2}Ge_{2} (R = La, Ce and Pr) single crystals

    Full text link
    Anisotropic magnetic properties of single crystalline RAu_{2}Ge_{2} (R = La, Ce and Pr) compounds are reported. LaAu_{2}Ge_{2} exhibit a Pauli-paramagnetic behavior whereas CeAu_{2}Ge_{2} and PrAu_{2}Ge_{2} show an antiferromagnetic ordering with N\grave{e}el temperatures T_{N} = 13.5 and 9 K, respectively. The anisotropic magnetic response of Ce and Pr compounds establishes [001] as the easy axis of magnetization and a sharp spin-flip type metamagnetic transition is observed in the magnetic isotherms. The resistance and magnetoresistance behavior of these compounds, in particular LaAu_{2}Ge_{2}, indicate an anisotropic Fermi surface. The magnetoresistivity of CeAu_{2}Ge_{2} apparently reveals the presence of a residual Kondo interaction. A crystal electric field analysis of the anisotropic susceptibility in conjunction with the experimentally inferred Schottky heat capacity enables us to propose a crystal electric field level scheme for Ce and Pr compounds. For CeAu_{2}Ge_{2} our values are in excellent agreement with the previous reports on neutron diffraction. The heat capacity data in LaAu_{2}Ge_{2} show clearly the existence of Einstein contribution to the heat capacity.Comment: Submitted to PRB 11 Pages 13 Figure

    Magnetic behavior of EuCu2As2: Delicate balance between antiferromagnetic and ferromagnetic order

    Full text link
    The Eu-based compound, EuCu2As2, crystallizing in the ThCr2Si2-type tetragonal structure, has been synthesized and its magnetic behavior has been investigated by magnetization (M), heat-capacity (C) and electrical resistivity (rho) measurements as a function of temperature (T) and magnetic field (H) as well as by 151Eu Moessbauer measurements. The results reveal that Eu is divalent ordering antiferromagnetically below 15 K in the absence of magnetic field, apparently with the formation of magnetic Brillouin-zone boundary gaps. A fascinating observation is made in a narrow temperature range before antiferromagnetism sets in: That is, there is a remarkable upturn just below 20 K in the plot of magnetic susceptibility versus T even at low fields, as though the compound actually tends to order ferromagnetically. There are corresponding anomalies in the magnetocaloric effect data as well. In addition, a small application of magnetic field (around 1 kOe at 1.8 K) in the antiferromagnetic state causes spin-reorientation effect. These results suggest that there is a close balance between antiferromagnetism and ferromagnetism in this compoundComment: Phys. Rev. B, in pres

    Evolution of magnetism in Yb(Rh_(1-x)Co_x)2Si2

    Full text link
    We present a study of the evolution of magnetism from the quantum critical system YbRh2Si2 to the stable trivalent Yb system YbCo2Si2. Single crystals of Yb(Rh_(1-x)Co_x)2Si2 were grown for 0 < x < 1 and studied by means of magnetic susceptibility, electrical resistivity, and specific heat measurements, as well as photoemission spectroscopy. The results evidence a complex magnetic phase diagram, with a non-monotonic evolution of T_N and two successive transitions for some compositions resulting in two tricritical points. The strong similarity with the phase diagram of YbRh2Si2 under pressure indicates that Co substitution basically corresponds to the application of positive chemical pressure. Analysis of the data proves a strong reduction of the Kondo temperature T_K with increasing Co content, T_K becoming smaller than T_N for x ~ 0.5, implying a strong localization of the 4f electrons. Furthermore, low-temperature susceptibility data confirm a competition between ferromagnetic and antiferromagnetic exchange. The series Yb(Rh_(1-x)Co_x)2Si2 provides an excellent experimental opportunity to gain a deeper understanding of the magnetism at the quantum critical point in the vicinity of YbRh2Si2 where the antiferromagnetic phase disappears (T_N=>0).Comment: 11 pages, 9 figure

    Magnetic, magnetocaloric and magnetotransport properties of RSn_{1+x}Ge_{1-x} compounds (R=Gd, Tb, Er; x=0.1)

    Full text link
    We have studied the magnetic, magnetocaloric and magnetotransport properties of RSn1+xGe1-x(R=Gd, Tb, Er; x=0.1) series by means of magnetization, heat capacity and resistivity measurements. It has been found that all the compounds crystallize in the orthorhombic crystal structure described by the centrosymmetric space group Cmcm (No. 63). The magnetic susceptibility and heat capacity data suggest that all the compounds are antiferromagnetic. Large negative values of {\theta}p in case of GdSn1.1Ge0.9 and TbSn1.1Ge0.9 indicate that strong antiferromagnetic interactions are involved, which is also reflected in the magnetization isotherms. On the other hand ErSn1.1Ge0.9 shows weak antiferromagnetic interaction. The heat capacity data have been analyzed by fitting the temperature dependence and the values of {\theta}D and {\gamma} have been estimated. Among these three compounds, ErSn1.1Ge0.9 shows considerable magnetic entropy change of 9.5 J/kg K and an adiabatic temperature change of 3.2 K for a field of 50 kOe. The resistivity data in different temperature regimes have been analyzed and the dominant contributions have been identified. All the compounds show small but positive magnetoresistance.Comment: 23 pages,11 figure
    corecore