18 research outputs found

    An insight to HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) pathogenesis; evidence from high-throughput data integration and meta-analysis

    Get PDF
    Background Human T-lymphotropic virus 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive disease of the central nervous system that significantly affected spinal cord, nevertheless, the pathogenesis pathway and reliable biomarkers have not been well determined. This study aimed to employ high throughput meta-analysis to find major genes that are possibly involved in the pathogenesis of HAM/TSP. Results High-throughput statistical analyses identified 832, 49, and 22 differentially expressed genes for normal vs. ACs, normal vs. HAM/TSP, and ACs vs. HAM/TSP groups, respectively. The protein-protein interactions between DEGs were identified in STRING and further network analyses highlighted 24 and 6 hub genes for normal vs. HAM/TSP and ACs vs. HAM/TSP groups, respectively. Moreover, four biologically meaningful modules including 251 genes were identified for normal vs. ACs. Biological network analyses indicated the involvement of hub genes in many vital pathways like JAK-STAT signaling pathway, interferon, Interleukins, and immune pathways in the normal vs. HAM/TSP group and Metabolism of RNA, Viral mRNA Translation, Human T cell leukemia virus 1 infection, and Cell cycle in the normal vs. ACs group. Moreover, three major genes including STAT1, TAP1, and PSMB8 were identified by network analysis. Real-time PCR revealed the meaningful down-regulation of STAT1 in HAM/TSP samples than AC and normal samples (P = 0.01 and P = 0.02, respectively), up-regulation of PSMB8 in HAM/TSP samples than AC and normal samples (P = 0.04 and P = 0.01, respectively), and down-regulation of TAP1 in HAM/TSP samples than those in AC and normal samples (P = 0.008 and P = 0.02, respectively). No significant difference was found among three groups in terms of the percentage of T helper and cytotoxic T lymphocytes (P = 0.55 and P = 0.12). Conclusions High-throughput data integration disclosed novel hub genes involved in important pathways in virus infection and immune systems. The comprehensive studies are needed to improve our knowledge about the pathogenesis pathways and also biomarkers of complex diseases.Peer reviewe

    Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (∼6 alleles) (95% confidence interval) = 1.24 (1.20-1.27), P = 5.05 × 10‾⁴⁹), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.This work was funded by a Medical Research Council (MRC) strategic award to M.D.T., I.P.H., D.S. and L.V.W. (MC_PC_12010). This research has been conducted using the UK Biobank Resource under application 648. This article presents independent research funded partially by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the UK Department of Health. This research used the ALICE and SPECTRE High-Performance Computing Facilities at the University of Leicester. Additional acknowledgments and funding details can be found in the Supplementary Note

    Receptor concentration and diffusivity control multivalent binding of Sv40 to membrane bilayers

    Get PDF
    Incoming Simian Virus 40 particles bind to their cellular receptor, the glycolipid GM1, in the plasma membrane and thereby induce membrane deformation beneath the virion leading to endocytosis and infection. Efficient membrane deformation depends on receptor lipid structure and the organization of binding sites on the internalizing particle. To determine the role of receptor diffusion, concentration and the number of receptors required for stable binding in this interaction, we analyze the binding of SV40 to GM1 in supported membrane bilayers by computational modeling based on experimental data. We measure the diffusion rates of SV40 virions in solution by fluorescence correlation spectroscopy and of the receptor in bilayers by single molecule tracking. Quartz-crystal microbalance with dissipation (QCM-D) is used to measure binding of SV40 virus-like particles to bilayers containing the viral receptor GM1. We develop a phenomenological stochastic dynamics model calibrated against this data, and use it to investigate the early events of virus attachment to lipid membranes. Our results indicate that SV40 requires at least 4 attached receptors to achieve stable binding. We moreover find that receptor diffusion is essential for the establishment of stable binding over the physiological range of receptor concentrations and that receptor concentration controls the mode of viral motion on the target membrane. Our results provide quantitative insight into the initial events of virus-host interaction at the nanoscopic level
    corecore