128 research outputs found

    Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters

    Get PDF
    Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed

    Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants

    Get PDF
    RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination

    High-Throughput Sequencing, Characterization and Detection of New and Conserved Cucumber miRNAs

    Get PDF
    Micro RNAS (miRNAs) are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance

    A Combined Approach of High-Throughput Sequencing and Degradome Analysis Reveals Tissue Specific Expression of MicroRNAs and Their Targets in Cucumber

    Get PDF
    MicroRNAs (miRNAs) are endogenous small RNAs playing an important regulatory function in plant development and stress responses. Among them, some are evolutionally conserved in plant and others are only expressed in certain species, tissue or developmental stages. Cucumber is among the most important greenhouse species in the world, but only a limited number of miRNAs from cucumber have been identified and the experimental validation of the related miRNA targets is still lacking. In this study, two independent small RNA libraries from cucumber leaves and roots were constructed, respectively, and sequenced with the high-throughput Illumina Solexa system. Based on sequence similarity and hairpin structure prediction, a total of 29 known miRNA families and 2 novel miRNA families containing a total of 64 miRNA were identified. QRT-PCR analysis revealed that some of the cucumber miRNAs were preferentially expressed in certain tissues. With the recently developed β€˜high throughput degradome sequencing’ approach, 21 target mRNAs of known miRNAs were identified for the first time in cucumber. These targets were associated with development, reactive oxygen species scavenging, signaling transduction and transcriptional regulation. Our study provides an overview of miRNA expression profile and interaction between miRNA and target, which will help further understanding of the important roles of miRNAs in cucumber plants

    Temperature Modulates Plant Defense Responses through NB-LRR Proteins

    Get PDF
    An elevated growth temperature often inhibits plant defense responses and renders plants more susceptible to pathogens. However, the molecular mechanisms underlying this modulation are unknown. To genetically dissect this regulation, we isolated mutants that retain disease resistance at a higher growth temperature in Arabidopsis. One such heat-stable mutant results from a point mutation in SNC1, a NB-LRR encoding gene similar to disease resistance (R) genes. Similar mutations introduced into a tobacco R gene, N, confer defense responses at elevated temperature. Thus R genes or R-like genes involved in recognition of pathogen effectors are likely the causal temperature-sensitive component in defense responses. This is further supported by snc1 intragenic suppressors that regained temperature sensitivity in defense responses. In addition, the SNC1 and N proteins had a reduction of nuclear accumulation at elevated temperature, which likely contributes to the inhibition of defense responses. These findings identify a plant temperature sensitive component in disease resistance and provide a potential means to generate plants adapting to a broader temperature range

    Identification and characterization of 27 conserved microRNAs in citrus

    Get PDF
    MicroRNAs (miRNAs) are a class of non-protein-coding small RNAs. Considering the conservation of many miRNA genes in different plant genomes, the identification of miRNAs from non-model organisms is both practicable and instrumental in addressing miRNA-guided gene regulation. Citrus is an important staple fruit tree, and publicly available expressed sequence tag (EST) database for citrus are increasing. However, until now, little has been known about miRNA in citrus. In this study, 27 known miRNAs from Arabidopsis were searched against citrus EST databases for miRNA precursors, of which 13 searched precursor sequences could form fold-back structures similar with those of Arabidopsis. The ubiquitous expression of those 13 citrus microRNAs and other 13 potential citrus miRNAs could be detected in citrus leaf, young shoot, flower, fruit and root by northern blotting, and some of them showed differential expression in different tissues. Based on the fact that miRNAs exhibit perfect or nearly perfect complementarity with their target sequences, a total of 41 potential targets were identified for 15 citrus miRNAs. The majority of the targets are transcription factors that play important roles in citrus development, including leaf, shoot, and root development. Additionally, some other target genes appear to play roles in diverse physiological processes. Four target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. Overall, this study in the identification and characterization of miRNAs in citrus can initiate further study on citrus miRNA regulation mechanisms, and it can help us to know more about the important roles of miRNAs in citrus

    Identification and Differential Expression of MicroRNAs during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus)

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs of 20-25 nucleotides that play a key role in diverse biological processes. Japanese flounder undergo dramatic metamorphosis in their early development. The metamorphosis is characterized by morphological transformation from a bilaterally symmetrical to an asymmetrical body shape concomitant with extensive morphological and physiological remodeling of organs. So far, only a few miRNAs have been identified in fish and there are very few reports about the Japanese flounder miRNA. METHODOLOGY/PRINCIPAL FINDINGS: Solexa sequencing technology was used to perform high throughput sequencing of the small RNA library from the metamorphic period of Japanese flounder. Subsequently, aligning these sequencing data with metazoan known miRNAs, we characterized 140 conserved miRNAs and 57 miRNA: miRNA* pairs from the small RNA library. Among these 57 miRNA: miRNA* pairs, twenty flounder miRNA precursors were amplified from genomic DNA. We also demonstrated evolutionary conservation of Japanese flounder miRNAs and miRNA* in the animal evolution process. Using miRNA microarrays, we identified 66 differentially expressed miRNAs at two metamorphic stages (17 and 29 days post hatching) of Japanese flounder. The results show that miRNAs might play a key role in regulating gene expression during Japanese flounder metamorphosis. CONCLUSIONS/SIGNIFICANCE: We identified a large number of miRNAs during flounder metamorphosis, some of which are differentially expressed at two different metamorphic stages. The study provides an opportunity for further understanding of miRNA function in the regulation of flounder metamorphosis and gives us clues for further studies of the mechanisms of metamorphosis in Japanese flounder

    Global Analyses of Small Interfering RNAs Derived from Bamboo mosaic virus and Its Associated Satellite RNAs in Different Plants

    Get PDF
    Background: Satellite RNAs (satRNAs), virus parasites, are exclusively associated with plant virus infection and have attracted much interest over the last 3 decades. Upon virus infection, virus-specific small interfering RNAs (vsiRNAs) are produced by dicer-like (DCL) endoribonucleases for anti-viral defense. The composition of vsiRNAs has been studied extensively; however, studies of satRNA-derived siRNAs (satsiRNAs) or siRNA profiles after satRNA co-infection are limited. Here, we report on the small RNA profiles associated with infection with Bamboo mosaic virus (BaMV) and its two satellite RNAs (satBaMVs) in Nicotiana benthamiana and Arabidopsis thaliana. Methodology/Principal Findings: Leaves of N. benthamiana or A. thaliana inoculated with water, BaMV alone or coinoculated with interfering or noninterfering satBaMV were collected for RNA extraction, then large-scale Solexa sequencing. Up to about 20% of total siRNAs as BaMV-specific siRNAs were accumulated in highly susceptible N. benthamiana leaves inoculated with BaMV alone or co-inoculated with noninterfering satBaMV; however, only about 0.1% of vsiRNAs were produced in plants co-infected with interfering satBaMV. The abundant region of siRNA distribution along BaMV and satBaMV genomes differed by host but not by co-infection with satBaMV. Most of the BaMV and satBaMV siRNAs were 21 or 22 nt, of both (+) and (-) polarities; however, a higher proportion of 22-nt BaMV and satBaMV siRNAs were generated in N. benthamiana than in A. thaliana. Furthermore, the proportion of non-viral 24-nt siRNAs was greatly increased in N. benthamiana after virus infection. Conclusions/Significance: The overall composition of vsiRNAs and satsiRNAs in the infected plants reflect the combined action of virus, satRNA and different DCLs in host plants. Our findings suggest that the structure and/or sequence demands of various DCLs in different hosts may result in differential susceptibility to the same virus. DCL2 producing 24-nt siRNAs under biotic stresses may play a vital role in the antiviral mechanism in N. benthamiana

    Cloning and Characterization of Maize miRNAs Involved in Responses to Nitrogen Deficiency

    Get PDF
    Although recent studies indicated that miRNAs regulate plant adaptive responses to nutrient deprivation, the functional significance of miRNAs in adaptive responses to nitrogen (N) limitation remains to be explored. To elucidate the molecular biology underlying N sensing/signaling in maize, we constructed four small RNA libraries and one degradome from maize seedlings exposed to N deficiency. We discovered a total of 99 absolutely new loci belonging to 47 miRNA families by small RNA deep sequencing and degradome sequencing, as well as 9 new loci were the paralogs of previously reported miR169, miR171, and miR398, significantly expanding the reported 150 high confidence genes within 26 miRNA families in maize. Bioinformatic and subsequent small RNA northern blot analysis identified eight miRNA families (five conserved and three newly identified) differentially expressed under the N-deficient condition. Predicted and degradome-validated targets of the newly identified miRNAs suggest their involvement in a broad range of cellular responses and metabolic processes. Because maize is not only an important crop but is also a genetic model for basic biological research, our research contributes to the understanding of the regulatory roles of miRNAs in plant adaption to N-deficiency stress
    • …
    corecore