46 research outputs found

    Expression and Membrane Topology of Anopheles gambiae Odorant Receptors in Lepidopteran Insect Cells

    Get PDF
    A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties

    Assembly of retinal rod or cone Na+/Ca2+/K+-exchanger oligomers with cGMP-gated channel subunits as probed with heterologously expressed cDNAs

    Get PDF
    Proper control of intracellular free Ca(2+) is thought to involve subsets of proteins that co-localize to mediate coordinated Ca(2+) entry and Ca(2+) extrusion. The outer segments of vertebrate rod and cone photoreceptors present one example: Ca(2+) influx is exclusively mediated via cGMP-gated channels (CNG), whereas the Na(+)/Ca(2+)-K(+) exchanger (NCKX) is the only Ca(2+) extrusion protein present. In situ, a rod NCKX homodimer and a CNG heterotetramer are thought to be part of a single protein complex. However, NCKX-NCKX and NCKX-CNG interactions have been described so far only in bovine rod outer segment membranes. We have used thiol-specific cross-linking and co-immunoprecipitation to examine NCKX self-assembly and CNG-NCKX co-assembly after heterologous expression of either the rod or cone NCKX/CNG isoforms. Co-immunoprecipitation clearly demonstrated both NCKX homooligomerization and interactions between NCKX and CNG. The NCKX-NCKX and NCKX-CNG interactions were observed for both the rod and the cone isoforms. Thiol-specific cross-linking led to rod NCKX1 dimers and to cone NCKX2 adducts of an apparent molecular weight higher than that predicted for a NCKX2 dimer. The mass of the cross-link product critically depended on the location of the particular cysteine residue used by the cross-linker, and we cannot exclude that NCKX forms a higher oligomer. The NCKX-NCKX and NCKX-CNG interactions were not isoform-specific (i.e., rod NCKX could interact with cone NCKX, rod NCKX could interact with cone CNGA, and vice versa). Deletion of the two large hydrophilic loops from the NCKX protein did not abolish the NCKX oligomerization, suggesting that it is mediated by the highly conserved transmembrane spanning segments

    Two Variants in SLC24A5

    No full text
    A unique eye color, called tiger-eye, segregates in the Puerto Rican Paso Fino (PRPF) horse breed and is characterized by a bright yellow, amber, or orange iris. Pedigree analysis identified a simple autosomal recessive mode of inheritance for this trait. A genome-wide association study (GWAS) with 24 individuals identified a locus on ECA 1 reaching genome-wide significance (Pcorrected = 1.32 × 10−5). This ECA1 locus harbors the candidate gene, Solute Carrier Family 24 (Sodium/Potassium/Calcium Exchanger), Member 5 (SLC24A5), with known roles in pigmentation in humans, mice, and zebrafish. Humans with compound heterozygous mutations in SLC24A5 have oculocutaneous albinism (OCA) type 6 (OCA6), which is characterized by dilute skin, hair, and eye pigmentation, as well as ocular anomalies. Twenty tiger-eye horses were homozygous for a nonsynonymous mutation in exon 2 (p.Phe91Tyr) of SLC24A5 (called here Tiger-eye 1), which is predicted to be deleterious to protein function. Additionally, eight of the remaining 12 tiger-eye horses heterozygous for the p.Phe91Tyr variant were also heterozygous for a 628 bp deletion encompassing all of exon 7 of SLC24A5 (c.875-340_1081+82del), which we will call here the Tiger-eye 2 allele. None of the 122 brown-eyed horses were homozygous for either tiger-eye-associated allele or were compound heterozygotes. Further, neither variant was detected in 196 horses from four related breeds not known to have the tiger-eye phenotype. Here, we propose that two mutations in SLC24A5 affect iris pigmentation in tiger-eye PRPF horses. Further, unlike OCA6 in humans, the Tiger-eye 1 mutation in its homozygous state or as a compound heterozygote (Tiger-eye 1/Tiger-eye 2) does not appear to cause ocular anomalies or a change in coat color in the PRPF horse
    corecore