9 research outputs found

    Production Log Data Analysis for Reject Rate Prediction and Workload Estimation

    Get PDF

    Spin excitations of magnetoelectric LiNiPO4_4 in multiple magnetic phases

    Full text link
    Spin excitations of magnetoelectric LiNiPO4_4 are studied by infrared absorption spectroscopy in the THz spectral range as a function of magnetic field through various commensurate and incommensurate magnetically ordered phases up to 33\,T. Six spin resonances and a strong two-magnon continuum are observed in zero magnetic field. Our systematic polarization study reveals that some of the excitations are usual magnetic-dipole active magnon modes, while others are either electromagnons, electric-dipole active, or magnetoelectric, both electric- and magnetic-dipole active spin excitations. Field-induced shifts of the modes for all three orientations of the field along the orthorhombic axes allow us to refine the values of the relevant exchange couplings, single-ion anisotropies, and the Dzyaloshinskii-Moriya interaction on the level of a four-sublattice mean-field spin model. This model also reproduces the spectral shape of the two-magnon absorption continuum, found to be electric-dipole active in the experiment

    Squeezing the periodicity of Néel-type magnetic modulations by enhanced Dzyaloshinskii-Moriya interaction of 4d electrons

    Get PDF
    In polar magnets, such as GaV4_{4}S8_{8}, GaV4_{4}Se8_{8} and VOSe2_{2}O5_{5}, modulated magnetic phases namely the cycloidal and the Néel-type skyrmion lattice states were identified over extended temperature ranges, even down to zero Kelvin. Our combined small-angle neutron scattering and magnetization study shows the robustness of the Néel-type magnetic modulations also against magnetic fields up to 2 T in the polar GaMo4_{4}S8_{8}. In addition to the large upper critical field, enhanced spin-orbit coupling stabilize cycloidal, Néel skyrmion lattice phases with sub-10 nm periodicity and a peculiar distribution of the magnetic modulation vectors. Moreover, we detected an additional single-q state not observed in any other polar magnets. Thus, our work demonstrates that non-centrosymmetric magnets with 4d and 5d electron systems may give rise to various highly compressed modulated states

    Magnetic resonances of multiferroic TbFe3(BO3)4

    Get PDF
    Low-energy magnetic excitations of the easy-axis antiferromagnet TbFe3_3(BO3_3)4_4 are investigated by far-infrared absorption and reflection spectroscopy in high magnetic fields up to 30 T. The observed field dependence of the resonance frequencies and the magnetization are reproduced by a mean-field spin model for magnetic fields applied both along and perpendicular to the easy axis. Based on this model we determined the full set of magnetic interactions, including Fe-Fe and Fe-Tb exchange interactions, single-ion anisotropy for Tb ions and gg-factors, which describe the ground-state spin texture and the low-energy spin excitations of TbFe3_3(BO3_3)4_4. Compared to earlier studies we allow a small canting of the nearly Ising-like Tb moments to achieve a quantitative agreement with the magnetic susceptibility measurements. The additional high energy magnetic resonance lines observed, besides the two resonances expected for a two-sublattice antiferromagnet, suggest a more complex six-sublattice magnetic ground state for TbFe3_3(BO3_3)4_4
    corecore