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ABSTRACT 

The main focus of the research presented in this paper is to propose new methods for filtering and cleaning 
large-scale production log data by applying statistical learning models. Successful application of the 
methods in consideration of a production optimization and a simulation-based prediction framework for 
decision support is presented through an industrial case study. Key parameters analysed in the 
computational experiments are fluctuating reject rates that make capacity estimations on a shift basis 
difficult to cope with. The most relevant features of simulation-based workload estimation are extracted 
from the products’ final test log, which process has the greatest impact on the variance of workload 
parameters.  

1 INTRODUCTION 

At the operational level of manufacturing systems, difficulties arise from unexpected tasks and events, non-
linearities, and a multitude of interactions while attempting to control various activities in dynamic shop 
floors. The selection of the most appropriate production control decision for a given assignment, as well as 
the prediction of cycle times, waiting times, workloads, or utilizations of the resources are no trivial tasks, 
although they can be supported by simulation-based evaluations (Pfeiffer 2007; Bagchi et al. 2008; Watt 
1998; Honkomp et al. 1999; Rose 2007; Sivakumar and Chong 2001).  

The discrete-event simulation (hereafter referred to as simulation) approach has been applied to 
decisions in scheduling and control, related to production applications (Banks 1998; Law and Kelton 2000; 
O’Rielly and Lilegdon 1999; Kim et al. 1998). The simulation models that are used for making or evaluating 
these decisions (e.g., by projecting different key performance indicators, KPIs) generally represent the flow 
of materials to and from processing machines and the operations of machines themselves (Rabelo et al. 
2003). Potential problems can be identified and corrected using a simulation model. By far the most 
common use of simulation models is for operational decisions such as scheduling or dispatching (Law and 
Kelton 2015; Lin et al. 2001; Sabuncuoglu and Kizilisik 2003). In related works about application areas, as 
well as the recent solutions of simulation in production control, simulation has been typically used for off-
line decision making. Consequently, effective integration into the control process of production was 
restrained. One of the limitations of its use in on-line decision making is the considerable amount of time 
spent in gathering and analysing data. In quasi real-time control (hours, minutes), however, the three key 
issues are data acquisition, quick response, and instantaneous feedback (Cowling and Johansson 2002). As 
a result, decision makers mostly apply simulation primarily for off-line decision support and not for the 
critical on-line decision making that may arise. 
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Therefore, based on previous results (Pfeiffer et al. 2016; Pfeiffer et al. 2011; Monostori et al. 2007), 
we propose a decision support architecture, in which the integrated, self-building simulation module can be 
applied for validation of the calculated manufacturing capacities, a priori recognition of due date deviations, 
and analysis of the effect of possible actions taken. In the research presented in the paper, special emphasis 
is given to the prediction and evaluation of the production on a daily, rolling time horizon (e.g., Work in 
process (WIP) trajectories, machine utilizations).  
 An important issue regarding the short-term (operational level) simulation is the automatic collection 
and definition of simulation input data. Therefore, as the main focus of this paper, a new reject rate 
classification and prediction method using logged testing data is presented. 
 The paper is structured as it follows. In Section 2, possible combinations of statistical learning and 
simulation in production control are introduced. Section 3 provides a method for production log data 
processing to predict reject rates through an industrial case study. Section 4 introduces simulation-based 
workload estimation, and the conclusions and outlook are provided in Section 5. 

2 COMBINATION OF SIMULATION AND STATISTICAL LEARNING 

The main goal of the framework introduced here is to provide a self-building production simulation, capable 
of both prospective (e.g., locate anticipated disturbances, identify trends of designated performance 
measures), and retrospective (e.g., gathering statistics on resources) simulation functionalities. Self-
building simulation means that the simulation model is built up by means of the combination of the 
manufacturing execution system (MES) data as well as the knowledge extracted from the MES data (e.g., 
resource and execution model). In addition to the automatic model building feature, the main requirement 
of the solution is to minimize the response time of the experiments and to enable the quasi “real-time” 
applicability of the simulation (Monostori et al 2007). 
 The main operation modes of the simulator in the proposed architecture (Figure 1) are as follows: 
 

 Off-line validation, sensitivity analysis and statistical modelling of the system. Evaluation of the 
robustness of the system against uncertainties (e.g., different control settings, thresholds and system 
load levels). Consequently, this scenario analysis might point out the resources or settings which 
can endanger the normal operation conditions. In Figure 1, off-line simulation represents the 
comprehensive model of the plant. 

 On-line, anticipatory recognition of deviations from the planned operation conditions by running 
the simulation parallel to the plant activities; and by using a lookahead function supporting situation 
recognition (proactive operation mode, Figure 1). 

 On-line analysis of the possible actions and minimization of the losses after a disturbance already 
occurred (reactive operation mode, Figure 1), e.g., what-if scenario analysis. 

 
In Figure 1, Plant represents the underlying production system, which is generally controlled through 

the manufacturing execution system. Thus, dark grey arrows represent production-related data provided by 
the plant (e.g., resource status, job completion, or the performance measure of KPI in the current case), 
either gathered by the MES and stored as log data, or monitored on-line by, i.e., the simulation framework. 
Light grey arrows represent an interaction or information exchange, e.g., the Decision-maker might control 
the process of the production highlighted as Reaction) of the plant by the MES system. In a real-world 
application, the three main distinct operation modes follow each other during operation. 

In contrast to the on-line proactive mode of the simulation, in the off-line scenario, simulation is applied 
in combination with the MES log data for setting up and parameterizing statistical learning prediction 
models (James et al. 2013) represented by Statistical learning, Prediction and classification models in 
Figure 1. Once the prediction models are set as an off-line analysis, permanent on-line simulation analysis 
of the manufacturing system is performed (highlighted by Time in the bottom right corner of Figure 1). This 
leads to a rolling horizon monitoring of the productions systems’ behaviour (e.g., by monitoring preselected 
performance measures of interest, e.g., LT of jobs) in advance by using prospective simulations. When a 
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relevant deviation occurs, i.e., a situation is recognized that might endanger the production, a prospective 
analysis and a classification of the deviations are performed. At this point, the models obtained in the 
previous off-line mode are combined with the current simulation results in order to analyse the possible 
effect of the deviation and, moreover, to filter out unnecessary interventions. For instance, in Figure 1 LT 
is expected to be out of the range defined by upper bound (UB). Consequently, the reactive simulation 
mode is initiated, where a predefined set of possible solutions (Decision alternative 1 – Decision alternative 
n, denoted as, e.g., Alt 1) for normalizing the production is performed, highlighted as disturbance handling 
mode in Figure 1. 

The simulation model structure in the simulator is the same for the three operation modes; however, 
the granularity (level of modelling detail), time horizon, applied failure models, and considered outputs 
depend on the purpose of the experiments. In the on-line modes the simulation models represent the virtual 
mirror of the plant and run parallel to the real manufacturing environment, instantly simulating the future 
processes for a predefined short period. 

In this paper, the off-line operation mode of the simulation and the prediction models are focused on. 
Interested readers might refer to Pfeiffer et al. (2011), where on-line application of the simulation 
framework is introduced in more details. 

 

Figure 1: Plant-level active disturbance handling realized by using statistical learning methods and 
reactive/proactive operation modes for simulation. 

3 PRODUCTION LOG DATA MANIPULATION FOR REJECT RATE PREDICTION – 
CASE STUDY 

3.1 Problem Definition – Reject Rate 

This section describes the main functionalities of the new methods and tools developed for the failure 
analyses and prioritization for reject rate prediction, based on production log data manipulation. The method 
developed performs a statistical analysis of manufacturing log data gathered on the shop floor of the 
assembly area of a manufacturing company. This is important to be able to provide high-quality input data 
(A0 in Figure 2) for the planning level (A3 in Figure 2) and especially for the simulation highlighted as A1 
in Figure 2. Therefore, the two main goals set for a detailed system analysis are the following: 
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1. provide reliable input for a simulation-based analysis of the system’s capacity (these data are 
used by the robust capacity planning method); 

2. directly utilize the outcomes, i.e., improve machine level robustness and performance by 
exploring capacity losses and proposing improvements. 

 
The proposed methods are tested on a real production system, as a part of a factory producing complex 

electro-mechanical components for the automotive industry. On the selected flexible flow assembly line, 
the products require several manual and automated operations and comprehensive testing. There are more 
than 150 product variants produced on the line with different routings and operator control logics for the 
different main product families, with usually 6 – 8 setups per shifts.  

After a performance analysis of the assembly line it could be stated that the planned and actual 
capacities are highly different and, furthermore, frequently changing from shift to shift. The main reason 
for that is the high variance of reject rates (also identified within one certain product code, caused by the 
high number of diverse parameters influencing the quality), making the testing machine a bottleneck. Due 
to safety criteria, the testing is done for 100% of the products, as, for instance, a rework and retest of the 
failed products cause unpredictable capacity requirement in the current situation. This results in a constant 
overriding of the production plan and schedule, causing backlogs, and in parallel a capacity loss, when 
operators cannot assemble parts due to insufficient testing capacity. 
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Figure 2: IDEF0 diagram of the planner and the failure analysis method. 

Thus, a robust production planning method must consider in parallel both the static workload for the 
different products and also the stochastic behaviour of the production. The idea is to formulate shift patterns 
regarding different reject rate behaviours, consequently, enabling e.g., smoothing the workload of the 
operators by a proper mid-term planning and control policy (e.g., combine products with high expected 
workload and low reject rate and schedule them in one shift). As the second goal set previously, the solution 
should provide a better control on the reject rates and should increase the utilization of the test bench as 
well.  

The method described in this section is responsible for the semi-automatic data manipulation and pre-
processing operations, integrated into the simulation framework. The solution is a tool based on R, a 
statistical programming language and analysis framework.  
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3.2 Proposed Statistical Methods and Algorithms Developed 

The comprehensive full test of each product means checking approximately 40 features in a predefined 
sequence of 20 steps. If any of the steps fails, i.e., the measured value is out of the specification limits, the 
product will fail the complete test and will be forwarded to a rework station. A failure code will be provided 
in the log, referring to the failure, together with the duration of the testing, added to all the other features 
measured so far. E.g., an analysis of a yearly amount of logs was performed on approximately 180,000 of 
these log entries. The raw data source is a set of plain text files (logged daily), which must be joined together 
in one csv file. After performing data pre-processing, output files and charts are formulated as highlighted 
in Figure 3. 

 

Figure 3: Main process flow of the test-reject analysis. 

As part of an exploratory data analysis, the method provides an overview of the testing log data pre-
processed. Figure 4a highlights a typical histogram of the failure code distribution of one selected product 
code. Most likely failure code 503 (6th bar from the left) will be the reason for rejecting the product, meaning 
an average of 120 seconds when this failure occurs during the test (square in the same bar). For this product 
code, the average testing time for a good product (passes all the testing steps) is 215 seconds (cross in the 
first bar).  

In Figure 4b, the stochastic behaviors of the reject rates are highlighted. A simple linear regression does 
not effectively include the high spread of the reject rate, therefore, a calculation simply combining the reject 
rate with the batch size would mislead the capacity calculation. Regarding, e.g., product family A800 with 
38 product codes (variants), the mean of the reject rates is 0.205 while the standard deviation is 0.072. All 
values presented here are scaled and all product names are changed in order to hide real company data. 

As the outcome of the exploratory data analysis, it can be assumed that many of the product codes 
(within one product family) have a particular “failure behaviour”. Therefore, as the commonly applied 
method for an exploratory analysis, unsupervised learning is applied. Unsupervised learning is a set of 
statistical tools intended for the setting in which only a set of features X1,X2,...,Xp are given, measured on n 
observations, while an associated response variable Y is missing, thus prediction being impossible. 

3.3 Computational Experiments and Validation 

For each product family, a pairwise hierarchical clustering is performed in order to find subgroups both for 
similar product codes and failure codes. Figure 5 presents the heat maps obtained for a selected product 
family (data is suggested to be filtered out for product codes having at least 1,000 log data entries). Data 
have to be scaled and centred. Therefore, each product has the same weight. The agglomeration method 
applied in the tool is the complete linkage method. 

In the hierarchical clustering algorithm, two dissimilarity measures are applied: the frequencies of 
failure codes (Figure 5a) as well as the product of test-fail time ratios and the frequencies of the failure 
codes (Figure 5b). The test-fail time ratio is calculated by dividing the average testing duration of a certain 
failure code by the total duration of a good products’ testing (full length, represented by a horizontal grey 
line in Figure 4a). The cutting heights of the products’ relevant trees are set to have six different groups for 
both heat maps. By applying the first dissimilarity measure, the results (Figure 5a) reflect anomalies of the 
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testing procedure. There are groups of products having similar failure profiles, which, according to the 
testing specialist at the company, gives the basis of a more-detailed analysis and readjustment 
(harmonization) of the specification limits for products with an identical function. The second dissimilarity 
measure results in a heat map (Figure 5b) containing also the “importance” of the failure codes, i.e., an 
early recognition of a failure during testing means less lost time of testing capacity. 

 

Figure 4: Characteristics of the failure code histogram for a selected product code. Grey bars represent the 
frequency, red squares the average time associated to the failure code and red plus signs the upper and lower 
quartiles. b) Stochastic behaviour of the reject rate for a selected product code. The horizontal axis 
represents the number of products in one batch and the vertical axis gives the rejected tests within the batch. 

 

Figure 5: Heat maps (a) and (b) by hierarchical clustering product (y-axis) vs. failure codes (x-axis), 
applying two different dissimilarity measures. Red means a higher, while grey a lower value. 
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Applying the grouping of this latter clustering, it is assumed that product codes could be handled 
together during the planning phase, mainly having similar key features influencing (and describing) the 
stochastic behaviour of their capacity requirement (Table 1). The ratio of average test-fail time and average 
testing time is given in column five (FTr). Together with the reject rate (Rr) these two factors highly 
influence the total loss time portion (TLp), the time portion of testing capacity used for testing failed 
products. The main focus of the improvements is given to the minimization of TLp.  

As an example of use, it can be stated that resulted product groups collect product codes with similar 
key features, e.g., group 1, 4 and 5, and finds outliers as group 3. 

Table 1: Results of the grouping by the key features of the selected product family. 

 

4 WORKLOAD ESTIMATION WITH SIMULATION 

In flexible, manually operated assembly systems (as introduced in Section 3), the prediction of estimated 
workload is often complicated, due to the variety of product types and the deviation of processing times. 
Though, stochastic or robust optimization models can be applied to cope with non-deterministic parameters, 
requiring high computation efforts and special solver algorithms. Additionally, diverse reject  rates of the 
product variants and the varying rate of rework also increase the complexity of planning models. 

The workload control of the selected assembly line (Figure 6) specifies the assignment of the operators 
with the assembly tasks. In this case, the general scheme of the assembly lines is applied, in which three 
main tasks are distinguished: assembly, rework, and final assembly.  

Test 
feed

Rework

Prod
B

Prod
C

Te
st
 b
u
ff
er

FA1 FA1 FA1

Assembly

Prod
A

WS1 WS2 WS6WS5WS4WS3

Test and rework Final assembly

 

Figure 6: General process description of the assembly line under consideration. 

Prod.	ID Gr.	ID Avg.	testing	time	[s] Avg.	test‐fail	time	[s] FTr Rr TLp
P286 1 274,84 108,06 0,411 0,17 0,076
P284 1 282,87 128,67 0,478 0,16 0,080
P222 1 271,84 97,15 0,375 0,19 0,079
P210 1 275,08 109,58 0,415 0,14 0,061
P234 2 284,73 109,74 0,416 0,13 0,053
P543 2 270,99 119,89 0,459 0,17 0,085
P227 2 280,92 108,23 0,413 0,13 0,056
P202 2 259,24 119,19 0,469 0,19 0,097
P229 3 290,31 158,28 0,591 0,25 0,152
P510 4 271,53 141,83 0,541 0,12 0,066
P509 4 273,9 136,16 0,520 0,17 0,094
P220 4 272,26 140,89 0,540 0,17 0,093
P219 4 273,57 148,64 0,565 0,16 0,093
P212 5 273,12 137,33 0,522 0,22 0,122
P211 5 272,44 132,31 0,503 0,21 0,114
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The workload control takes the operator headcount as an input and specifies the operator-task 
assignments, considering that more tasks can be assigned to a single operator. The assignments are many-
to-many type ones, which means that an operator might perform several tasks and a given task can be 
assigned to more than one operator. In order to determine the proper workload controls for each product 
and possible headcount, a discrete-event simulation (DES) model of the assembly line is applied 
(highlighted as A1 Simulation in Figure 2). Even though state-of-the-art assembly systems are usually 
equipped with advanced sensor networks, the real workload of the operators is hard to monitor. The DES 
model of the assembly line can provide reliable results about the workloads, and several various control 
policies can be evaluated. The main advantage of using simulation for such purposes is its capability to 
represent the stochastic nature of important processes, i.e., using the reject rate profiles for a certain product 
mix to be processed. In order to select the proper workload control, several random generated operator 
control scenarios are analysed (Table 2). The main outputs of the simulation analysis are the utilization of 
the operators and the performance of the line. By this way, the proper controls can be selected for each 
product mix and operator headcount (Table 3). 

Table 2: Operator control scenarios defined for the simulation experiment analysing the workload under 
fluctuating reject rates per product mix. A: assembly, R: rework and testing, F: final assembly.  

 # OP1 OP2 OP3 OP4 OP5 OP6 SUM 

1 A A FA FA R   5 

2 A A FA FA R A 6 

3 A A FA FA R + A   5 

4 A A FA FA + A R   5 

5 A A + R FA FA     4 

6 A A FA FA R A 6 

7 A A FA + A FA + A R   5 

Table 3: Results of the simulation analysis of estimated workload and operator utilization on a selected 
product mix. 

# OP1 OP2 OP3 OP4 OP5 OP6 THP Virtual Takt Takt Performance Avg Dev 

1 100 100 58 41 37  96100 1,50 1 67% 67 30,7 

2 100 100 80 69 55 100 144130 1,00 1 100% 84 18,9 

3 100 100 71 55 100  121630 1,18 1 84% 85 20,8 

4 100 100 99 100 49  127860 1,13 1 89% 89 22,6 

5 100 100 52 33 0  81064 1,78 1 56% 71 43,4 

6 100 100 80 69 55 100 144130 1,00 1 100% 84 18,9 

7 94 94 100 100 48  124418 1,16 1 86% 87 22,0 

 

5 CONCLUSIONS AND FUTURE WORK 

Concluding, “failure profiles” were formulated by using the grouping, providing expected test-fail times 
and frequencies. Consequently, a cluster analysis could be applied as an input for the simulation. As a final 
goal in the future, it could be applied in the robust production planning method. The ongoing work also 
includes creating reject rate profiles based on the clusters and a comprehensive time-series analysis. Thus, 
regression models could be applied for predicting expected reject rates based on the recent system status. 

Future work in this direction includes the extension of the methods for dynamic, “real-time” reject rate 
estimation and prediction, based on continuous data streaming. In this case the main problem is the 
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unpredictable behaviour of rejected tests within one corresponding lot (Figure 7), making real-time reject 
rate calculation difficult. 

 

Figure 7: Distribution of test rejects within two selected lots, based on log data analysis. 
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