
 

1 

 

Real-time prediction of manufacturing lead times in 

complex production environments 
  

  

Ádám Szallera (szaller.adam@sztaki.mta.hu) 
aInstitute for Computer Science and Control, Hungarian Academy of Sciences 

 

Ferenc Béresa 

 

Éva Pillera 

 

Dávid Gyulaia 

 

András Pfeiffera 

 

András Benczúra  

 

 

 

 

 

Abstract 
 

In recent, dynamically changing production environments, accurate prediction of 

manufacturing lead times is more complicated than ever before, with traditional methods 

not always applicable. Given the large amount of data that can be gathered from the 

processes, it is a natural idea to deploy machine learning for lead time prediction. We 

show that linear regression and in particular boosted trees achieve accurate lead time 

predictions in near real-time. The efficiency of the method is presented by experimental 

results, obtained from a simulation-based test case. 
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Introduction 

Recent global trends and their impact on manufacturing industry 

A recent global trend is the continuously increasing turbulence of markets, resulting in 

the need of rapid responses from the industry. On the customers’ side, high service level 

is expected, manifesting in the need of customized products that need to be delivered 

within a narrow time-window. These requirements create complex problems on the side 

of the manufacturing industry, as a high variety of products have to be produced, 

moreover, planning and control decisions must be made quickly and efficiently. 

The complexity of manufacturing systems is higher than ever before, as products in a 

high variety typically require a wide range of technologies and equipment. Besides the 

increasing complexity, of course, manufacturing systems and technology have also 

advanced a lot in several aspects during the past years. Cyber-physical systems are part 

of the everyday’s practice, and they make it possible to collect detailed data about the 

products, processes and resources near real-time (Monostori et al., 2016). This leads to a 

massive set of detailed data that accompanies the products through their way in the value 
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chain, from the design stage to their use by the customers. This data is called the digital 

thread, and enables decision makers to increase the efficiency of the processes related to 

the creation of products (Helu et al., 2017). 

Lead time prediction in complex environments 

In order to utilize the digital thread efficiently, decision making processes and advanced 

analytics techniques need to be applied. Considering lead time prediction as a typical 

problem in production control, one can identify that traditional methods are not always 

able to support decision making efficiently. Manufacturing lead time is the time that a 

product spends in the manufacturing system in between two selected processes. It 

characterizes the dynamics of the system, and also forms the basis of the most important 

control decisions, e.g. prioritization of jobs, selection of routings and setting of due dates. 

As for the conventional lead time prediction methods, most fundamental ones are 

based on Little’s law (Little, 2011), however, they are typically applied in stationary 

environments, simple process chains and a limited variety of product range. In order to 

predict lead times, a data analytics and machine learning based approach is proposed in 

the paper that relies on the actual state of the production environment utilizing the digital 

thread. The method is aimed at capturing all aspects that influence production lead times 

in a complex, changing manufacturing environment. 

 

Problem statement 

Manufacturing lead time prediction 

Lead time is the span between that a given job spends in the system, starting with its 

release until its completion. We consider the task of predicting the lead time of a job 

before its release. In a complex manufacturing environment, several different products 

share the same resources. In addition, technological and process parameters are typically 

product type dependent. In such cases, it is complicated to calculate the expected lead 

times, due to the dynamics of the system and the interdependencies of various factors.  

In the paper, lead time prediction is performed by knowing the actual state of the 

system at any given point of time, along with the parameters of the jobs whose lead time 

is in question. 

The input data of the prediction is provided by the Manufacturing Execution System 

(MES) of the production environment in quasi real time. This data includes log entries 

about process completions, therefore, status of jobs and their location within the system 

are always known. The proposed prediction method and the corresponding data analytics 

environment were elaborated by considering a realistic flow-shop manufacturing 

environment. The tests and algorithm fine tuning were performed by applying a discrete-

event simulation model, which represents the manufacturing environment together with 

the process dynamics, stochasticity of the parameters. Moreover, the model is also 

capable of simulating the MES system operation by streaming production log data in 

quasi-real-time. The details of the simulation model and the process parameters are 

provided in the following section. 

 

Description of the simulation model 

In the analyzed case, the digital thread is composed of data about the execution of the 

manufacturing processes, the flow of materials in the system and the state of the 

resources. The operation of the system is represented by its discrete-event simulation 

model (implementing a digital twin (Rosen et al., 2015)), which is the most common, and 

efficient way of analyzing complex production and logistics processes. The simulation 

model is linked to the data analytics toolset, as described later. The model is implemented 

in Siemens Tecnomatix Plant Simulation, and it is capable of streaming production data 
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real-time towards the lead time prediction model. Important to note that applying a 

simulation model as a testbed supports the model development, fine tuning and 

commissioning, however, the main objective is to apply the final, fledged version of the 

models in a real production environment. 

The simulation model represents a realistic flow-shop production environment, 

including  7x4 machines. This means that the system consists of seven processing stages, 

with four parallel, alternative resources in each stage. In front of each machine, a buffer 

is placed with a capacity of 10 parts. After the necessary manufacturing processes has 

been performed, products are tested to identify the functionally failed products that are 

transferred to a buffer dedicated to items to be reworked. As for the product failures and 

reject rates, two different cases were investigated (in both cases, a certain product can be 

reworked only one time - after that, it is sure that the product is appropriate): 

1. In total, 10% of the jobs are randomly (with a uniform distribution) marked as failed 

items that need be reworked. The station which actually does the rework is chosen 

randomly from the routing of the job, simulating random failure root causes. 

2. Machine availabilities are imperfect, as they can break down for a certain time. 

Machine breakdowns randomly happen in between 3-5 hours, following a uniform 

distribution. The duration of a breakdown is also a random timespan with uniform 

distribution between 45-90 minutes. When a machine is failed, it continuously 

produces failed products, which have to be reworked on the same workstation. 

The difference between the production stages is their manufacturing time that are 

stochastic by nature, following a normal distribution predefined by parameters (Table 1). 

In the second case, if machines are considered as elements of a matrix, and a row index 

of the machines are denoted by x, then the manufacturing time of a certain machine is the 

following (in seconds): 

 
Table 1 – Cycle times of the machines in the two investigated cases 

 Expected value Deviation Lower bound Upper bound 

First case 60 sec 30 sec 20 sec 100 sec 

Second case x*60 sec x*60/4 sec x*60-x*15 sec x*60+x*15 sec 

 

In the analyzed production system, four product types (A,B,C,D) are produced. Neither 

product, nor job routings are definite, but they are described by probability functions. For 

example, on product B, three manufacturing steps are performed: the first step can be 

done only on SingleProc7, the second can be done on SingleProc15 or on SingleProc22 

with 50%-50% probability, and the third step is performed by SingleProc20 or 

SingleProc27 with 80% and 20% probability. The material flow of product B is visualized 

with a Sankey diagram on Figure 1. All product types have similar, characteristic routings 

with different number of manufacturing steps. 

 

 
Figure 1 – Material flow of product B visualized on a Sankey diagram 
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Lead time prediction 
For lead time prediction, we implemented a data analytics toolset, composed of a NoSQL 

database, a feature calculator and a lead time predictor with a dashboard (Figure 2). This 

framework can provide almost real time predictions for jobs in case of streaming data 

sources (e.g. the simulation model). 

 
Figure 2 - Architecture for real time prediction of lead times 

 

In what follows, we will describe the design and evaluation of the feature calculator 

and lead time predictor modules. 

 

Little’s law 

Little's law (Little, 2011) states that the long-term average number L of products in a 

stationary system is equal to the long-term average effective arrival rate λ multiplied by 

the average lead time W. Hence W = L/λ, which we will use both as a direct baseline lead 

time prediction and a predictive variable in our experiments. Note that it is a key 

assumption in Little’s law that the system is stationary, hence we cannot expect to hold 

under our highly non-stationary setting. If the system is not stationary, we measure 

different L and λ at different time intervals. We will also experiment with the time window 

for calculating L and λ to give lead time prediction at a given point in time. 

 

Machine Learning 

Machine learning, predictive analytics, or regression analysis are all different names of 

producing qualitative predictions derived from existing data. Traditionally, predictive 

methods belong to statistics, which was already using decision trees (Safavian et al., 

1998) and regression (Cox, 1958) from early times. Recently, boosting became a 

preferred technique used in most data analysis challenge solution projects (Chen et al., 

2016) due to its high accuracy and good model interpretability.  Next, we describe these 

methods, which we will use in our experiments. 

Simply stated, a linear regression model is a monotonic transformation of the linear 

combination of the variables (Cox, 1958). The advantage of the linear model is that it 

explains the importance of the variables by the coefficients as weights. Linear regression 

has a drawback: it is prone to overfitting correlating variables. Two improved versions 

that we test in our experiments is LASSO (least absolute shrinkage and selection 

operator) that performs both variable selection and regularization (Tibshirani, 1996) and 

Huber’s regression (Rousseeuw and Leroy, 2005) that is robust to outliers in the data. 
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Regression trees (Safavian et al., 1998) are inductively built by splitting the actual set 

of events along the variable that reduces the variance the most after the split. The 

disadvantage of regression trees is that they tend to overfit deeper down in the tree, since 

the decisions are made based on decreasingly fewer events. 

Boosting (Freund et al., 1997) uses the idea to train simple classifiers, for example, 

small decision trees, by gradually improving the prediction quality in iteration cycles. The 

main advantage compared to large decision trees is that boosting obtains training gained 

over the entire data and not just a subset in all the iterations. We will also use boosting 

for feature selection: The first shallow decision tree, by construction, involves the 

variables with strongest predictive power. The next tree is trained on the difference of the 

predicted and the actual value (the residual), hence the variables in the next tree have the 

strongest predictive power independently of the previous set, after removing the effects 

of the previously selected variables.  

 

Evaluation metrics 

The prediction of manufacturing lead times is a regression problem, as a numerical value 

is to be predicted in the know of various features. Symmetric mean absolute percentage 

error (SMAPE) is used to describe the prediction error: 

 

Equation (1): 

𝑆𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝐹𝑖−𝐴𝑖|

(|𝐹𝑖|+|𝐴𝑖|) / 2

𝑛
𝑖=1 , 

 

where Fi is the forecasted and Ai is the actual lead time of the ith job. In this section 

conventional techniques and machine learning models are compared based on SMAPE. 

 

Feature engineering and selection 

We extracted several variables from manufacturing time series that describe the exact 

state of the system when a new job enters. The number of jobs in workstations or buffers, 

product arrival rate and various other statistics were also calculated based on the recent 

or long-term historical production data to improve the proposed lead time predictors, 

including: 

● Product type and number of job entering in last 1 and 24 hours, by type. 

● Work in progress (WIP, number of jobs in the system), actual average lead time, 

and lead time estimated by Little’s law.  All three figures broken down by product 

type and routings, including failure routings. All figures measured at present, and 

in the lasts 100, 500, 800 and 1000 seconds. 

● Time elapsed since the last job entered the factory for each product type, routing, 

or failed product. 

● Number of failed stations. 

The purpose of feature engineering is to provide a sufficiently rich attribute table for 

the machine learning methods. However, linear models are known to produce suboptimal 

results when trained over a large number of correlating features. We propose and evaluate 

the following feature selection method in conjunction with the linear models. We 

compute a Gradient Boosted Tree regressor and for each feature, we used the average 

gain of splits by that feature as an importance measure (Table 2).  We selected the eight 

most important features, which are listed in Table 3. The table also shows regression 

coefficients and the Spearman correlation with lead time. 
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Table 2 – Prediction error (SMAPE) is better for linear models using boosting based feature 

selection. Models were trained on the first 30 days of the second simulation. 
Model Without feature selection With feature selection 

Linear Regression 0.2453 0.2100 

LASSO 0.2428 0.2095 

Huber Regression 0.2440 0.2040 

 
Table 3 – List of the eight most important attribute selected by Gradient Boosted Tree for the 

second simulation in decreasing order. The coefficients of the linear models trained over the 

first 30 days. We marked counterintuitive regression coefficients by asterisk (*). 

Feature name Importance Spearman 
Linear 

Regression 
LASSO Huber 

Mean lead time of 

current product type  
104.07 0.83 -0.15* 0.01 0.02 

WIP in current routing 49.67 0.91 213.87 198.70 154.01 

Mean of lead times for 

failed products on 

current routing 

41.26 0.85 -0.06* 0.12 -0.04* 

Mean of lead times on 

the current routing 
33.77 0.88 0.60 0.42 0.66 

Is product type A? 17.35 0.75 3046.41 0.00* 2.24 

Index of product in 

the current batch 
11.60 0.14 122.54 107.10 99.32 

Time elapsed since 

last job entered with 

same product type 

10.74 0.14 -0.11 -0.13 -0.14 

Is product type C? 8.87 -0.42 125.83 112.77 20.01 

 

Experiments 

We compared the prediction error of various prediction methods for both simulations. For 

model fitting and evaluation, we used the data up to a given point in time for training and 

the remaining data for testing. We present SMAPE for the testing period. For each job, 

we predicted the lead time when a job entered the system. We consider mean lead time 

from the past and the estimation based on Little’s law, in addition to the machine learning 

based predictions. 

In general the prediction error was larger for reworked jobs compared to normal 

products (Figure 3). In the first simulation we have no information about whether the 

given product needs to be reworked later when it enters the factory. In the second case if 

we observe the number of reworked products per workstations in the recent history, then 

we may guess whether the routing of the current job contains any malfunctioning 

processes at the moment. In this case, the normal lead time will increase by the length of 

the additional rework process. 
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Figure 3 – Predictive performance is evaluated for all products (total), only reworked or only 

normal jobs. We used the first 30 days of each simulation for model fitting. 

 

For both simulations, machine learning methods performed better than the past average 

and Little’s law. However, for the second simulation, the gain compared to baselines was 

significantly larger (0.17) than for the first case (0.05). This is due to the non-stationary 

distribution of the second simulation (see Table 1) where the total manufacturing time for 

different product routings can greatly vary. Also note that average lead time by routings 

performs much better than simply by product type in the second simulation (Figure 3), 

where we may also guess reworked jobs in advance by observing failure rate of 

workstations. 

The results show that the length of the training period (first 7 or 14 days) has only 

minor impact on the prediction error (Figure 4). However, using just a few days to fit 

models could introduce many missing values, as we may not know some statistics for all 

the product routings. During the experiments, we replaced missing values with the 

average value of known records for each attribute. 
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Figure 4 – Prediction error of several baseline and machine learning models for both 

simulations. Methods were trained on the first 14 or 30 days respectively. 

 

So far, we observed lead time prediction in different simulations with predefined 

training and testing intervals. Additionally, we also would like to compare the predictive 

power of the previously described methods when the production environment changes 

unexpectedly. We model this concept drift by combining 10-10 days from the first then 

from the second simulation. We present each model in two different settings: 

A. Static: training only on the first 7 days (Day 1-7) 

B. Adaptive: daily re-training of the model, always using the previous 7 days 

The prediction error (SMAPE) is evaluated for each day from Day 8 to Day 20. On the 

one hand, after the concept drift on Day 11, static models become completely ineffective 

(Figure 5). On the other hand, tree based methods (Decision Tree, Gradient Boosted 

Trees) quickly adapt to the new circumstances, even faster than the linear models (Figure 

6). Linear models stabilize only after Day 18, when the training data no longer includes 

jobs from the first simulation. 

 

 
Figure 5 – Comparison of static and adaptive model behavior after the concept drift on Day 11. 
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Figure 6 – Prediction error of adaptive models after the concept drift on Day 11. 

 

Application of the method in production management decisions 

Accurate prediction of lead times in production management and control is of crucial 

importance in increasing overall effectiveness, as several different decisions relate to it, 

including allocated human manpower, or assigned due dates. Therefore, in order to 

prevent late job completions, and idle, underutilized capacities, decision makers in 

production control need to apply efficient tools for prediction, as dynamics of recent 

production processes is higher than ever before. However, it is a great advantage of 

today’s production systems that they are capable of providing detailed data about the 

processes, enabling to apply novel lead time prediction tools, as introduced in the paper. 

The proposed method is developed so as so apply it in a daily production control 

decisions, as a complementary, add-on tool of business intelligence or MES systems. 

Although the tool directly supports lower level control decisions, it is also capable of 

providing high level, managerial decisions, with data about lead time related statistics as 

important elements corporate KPIs, e.g. service level, work-in-progress, or OEE related 

metrics like performance. As the tool utilizes latest production data, it can be applied to 

evaluate different control logics, job prioritization modes and dispatching rules that have 

significant impact on KPIs. In this way, production managers can always obtain an up-

to-date and comprehensive picture of the efficiency production control decisions. 

 

Conclusions 
In the paper, a novel, data analytics and machine learning based method was proposed to 

predict lead times in a dynamic production environment. We demonstrated that the 

method is capable of making accurate predictions in near real time, even in the case of a 

highly non-stationary system. We tested several linear regression and tree based methods 

and found that boosted trees give lowest error while also capable of interpreting the results 

and selecting the most relevant features that influence the lead time. Our experiments 

were conducted on simulation-generated data, however, the method can be applied in any 

flow-shop environment that is capable of streaming online production log data. As stated, 

the method can be applied directly to support production control decisions on a daily 

basis, moreover, managerial implications can be also derived by obtaining a 

comprehensive picture about the effect of control decisions on the change of higher level 

KPIs.  As for the future work, we plan to evaluate the results in a production environment, 

deploying the proposed models and integrating them with the corporate and shop-floor 

IT systems. 
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