143 research outputs found
Metacarpophalangeal joint loads during bonobo locomotion: model predictions vs. proxies
The analysis of internal trabecular and cortical bone has been an informative tool for drawing inferences about behaviour in extant and fossil primate taxa. Within the hand, metacarpal bone architecture has been shown to correlate well with primate locomotion; however, the extent of morphological differences across taxa is unexpectedly small given the variability in hand use. One explanation for this observation is that the activity-related differences in the joint loads acting on the bone are simply smaller than estimated based on commonly used proxies (i.e. external loading and joint posture), which neglect the influence of muscle forces. In this study, experimental data and a musculoskeletal finger model are used to test this hypothesis by comparing differences between climbing and knuckle-walking locomotion of captive bonobos (Pan paniscus) based on (i) joint load magnitude and direction predicted by the models and (ii) proxy estimations. The results showed that the activity-related differences in predicted joint loads are indeed much smaller than the proxies would suggest, with joint load magnitudes being almost identical between the two locomotor modes. Differences in joint load directions were smaller but still evident, indicating that joint load directions might be a more robust indicator of variation in hand use than joint load magnitudes. Overall, this study emphasizes the importance of including muscular forces in the interpretation of skeletal remains and promotes the use of musculoskeletal models for correct functional interpretations
Evidence for habitual climbing in a Pleistocene hominin in South Africa
Bipedalism is a defining trait of the hominin lineage, associated with a transition from a more arboreal to a more terrestrial environment. While there is debate about when modern human-like bipedalism first appeared in hominins, all known South African hominins show morphological adaptations to bipedalism, suggesting that this was their predominant mode of locomotion. Here we present evidence that hominins preserved in the Sterkfontein Caves practiced two different locomotor repertoires. The trabecular structure of a proximal femur (StW 522) attributed to Australopithecus africanus exhibits a modern human-like bipedal locomotor pattern, while that of a geologically younger specimen (StW 311) attributed to either Homo sp. or Paranthropus robustus exhibits a pattern more similar to nonhuman apes, potentially suggesting regular bouts of both climbing and terrestrial bipedalism. Our results demonstrate distinct morphological differences, linked to behavioral differences between Australopithecus and later hominins in South Africa and contribute to the increasing evidence of locomotor diversity within the hominin clade
Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington's disease
Huntington's disease is an autosomal dominant inherited neurodegenerative disease with motor symptoms that are variably co-expressed with mood and cognitive symptoms, and in which variable neuronal degeneration is also observed in the basal ganglia and the cerebral cortex. We have recently shown that the variable symptomatology in Huntington's disease correlates with the variable compartmental pattern of GABAA receptor and cell loss in the striatum. To determine whether the phenotypic variability in Huntington's disease is also related to variable neuronal degeneration in the cerebral cortex, we undertook a double-blind study using unbiased stereological cell counting methods to determine the pattern of cell loss in the primary motor and anterior cingulate cortices in the brains of 12 cases of Huntington's disease and 15 controls, and collected detailed data on the clinical symptomatology of the patients with Huntington's disease from family members and clinical records. The results showed a significant association between: (i) pronounced motor dysfunction and cell loss in the primary motor cortex; and (ii) major mood symptomatology and cell loss in the anterior cingulate cortex. This association held for both total neuronal loss (neuronal N staining) and pyramidal cell loss (SMI32 staining), and also correlated with marked dystrophic changes in the remaining cortical neurons. There was also an association between cortical cell loss and striatal neuropathological grade, but no significant association with CAG repeat length in the Huntington's disease gene. These findings suggest that the heterogeneity in clinical symptomatology that characterizes Huntington's disease is associated with variation in the extent of cell loss in the corresponding functional regions of the cerebral cortex whereby motor dysfunction correlates with primary motor cortex cell loss and mood symptomatology is associated with cell loss in the cingulate corte
The deep trabecular structure of first metacarpals in extant hominids
Objectives: Recent studies have associated subarticular trabecular bone distribution in the extant hominid first metacarpal (Mc1) with observed thumb use, to infer fossil hominin thumb use. Here, we analyze the entire Mc1 to test for interspecific differencesin: (1) the absolute volume of trabecular volume fraction, (2) the distribution ofthe deeper trabecular network, and (3) the distribution of trabeculae in the medullarycavity, especially beneath the Mc1 disto-radial flange.
Materials and Methods: Trabecular bone was imaged using micro-computed tomography in a sample of Homo sapiens (n = 11), Pan paniscus (n = 10), Pan troglodytes(n = 11), Gorilla gorilla (n = 10) and Pongo sp., (n = 7). Using Canonical Holistic Morphometric Analysis (cHMA), we tested for interspecific differences in the trabecular bone volume fraction (BV/TV) and its relative distribution (rBV/TV) throughout the Mc1, including within the head, medullary cavity, and base.
Results: P. paniscus had the highest, and H. sapiens the lowest, BV/TV relative to other species. rBV/TV distribution statistically distinguished the radial concentrations and lack of medullary trabecular bone in the H. sapiens Mc1 from all other hominids. H. sapiens and, to a lesser extent, G. gorilla also had a significantly higher trabecular volume beneath the disto-radial flange relative to other hominids.
Discussion: These results are consistent with differences in observed thumb use in these species and may also reflect systemic differences in bone volume fraction. The trabecular bone extension into the medullary cavity and concentrations beneath the disto-radial flange may represent crucial biomechanical signals that will aid in the inference of fossil hominin thumb use
Musculoskeletal models of a human and bonobo finger: parameter identification and comparison to in vitro experiments
Introduction: Knowledge of internal finger loading during human and non-human primate activities such as tool use or knuckle-walking has become increasingly important to reconstruct the behaviour of fossil hominins based on bone morphology. Musculoskeletal models have proven useful for predicting these internal loads during human activities, but load predictions for non-human primate activities are missing due to a lack of suitable finger models. The main goal of this study was to implement both a human and a representative non-human primate finger model to facilitate comparative studies on metacarpal bone loading. To ensure that the model predictions are sufficiently accurate, the specific goals were: (1) to identify species-specific model parameters based on in vitro measured fingertip forces resulting from single tendon loading and (2) to evaluate the model accuracy of predicted fingertip forces and net metacarpal bone loading in a different loading scenario.
Materials & Methods: Three human and one bonobo (Pan paniscus) fingers were tested in vitro using a previously developed experimental setup. The cadaveric fingers were positioned in four static postures and load was applied by attaching weights to the tendons of the finger muscles. For parameter identification, fingertip forces were measured by loading each tendon individually in each posture. For the evaluation of model accuracy, the extrinsic flexor muscles were loaded simultaneously and both the fingertip force and net metacarpal bone force were measured. The finger models were implemented using custom Python scripts. Initial parameters were taken from literature for the human model and own dissection data for the bonobo model. Optimized model parameters were identified by minimizing the error between predicted and experimentally measured fingertip forces. Fingertip forces and net metacarpal bone loading in the combined loading scenario were predicted using the optimized models and the remaining error with respect to the experimental data was evaluated. Results. The parameter identification procedure led to minor model adjustments but considerably reduced the error in the predicted fingertip forces (root mean square error reduced from 0.53/0.69 N to 0.11/0.20 N for the human/bonobo model). Both models remained physiologically plausible after the parameter identification. In the combined loading scenario, fingertip and net metacarpal forces were predicted with average directional errors below 6◦ and magnitude errors below 12%. Conclusions. This study presents the first attempt to implement both a human and nonhuman primate finger model for comparative palaeoanthropological studies. The good agreement between predicted and experimental forces involving the action of extrinsic flexors—which are most relevant for forceful grasping—shows that the models are likely sufficiently accurate for comparisons of internal loads occurring during human and non-human primate manual activities
Trabecular architecture of the distal femur in extant hominids
Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re‐)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter‐ and intra‐specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins
Gas mixing enhanced by power modulations in atmospheric pressure microwave plasma jet
Microwave plasma jet operating in atmospheric pressure argon was power modulated by audio frequency sine envelope in the 10^2 W power range. Its effluent was imaged using interference filters and ICCD camera for several different phases of the modulating signal. The combination of this fast imaging with spatially resolved optical emission spectroscopy provides useful insights into the plasmachemical processes involved. Phase-resolved schlieren photography was performed to visualize the gas dynamics. The results show that for higher modulation frequencies the plasma chemistry is strongly influenced by formation of transient flow perturbation resembling a vortex during each period. The perturbation formation and speed are strongly influenced by the frequency and power variations while they depend only weakly on the working gas flow rate. From application point of view, the perturbation presence significantly broadened lateral distribution of active species, effectively increasing cross-sectional area suitable for applications
Observations on comatose survivors of cardiopulmonary resuscitation with generalized myoclonus
BACKGROUND: There is only limited data on improvements of critical medical care is resulting in a better outcome of comatose survivors of cardiopulmonary resuscitation (CPR) with generalized myoclonus. There is also a paucity of data on the temporal dynamics of electroenephalographic (EEG) abnormalities in these patients. METHODS: Serial EEG examinations were done in 50 comatose survivors of CPR with generalized myoclonus seen over an 8 years period. RESULTS: Generalized myoclonus occurred within 24 hours after CPR. It was associated with burst-suppression EEG (n = 42), continuous generalized epileptiform discharges (n = 5), alpha-coma-EEG (n = 52), and low amplitude (10 μV <) recording (n = 1). Except in 3 patients, these EEG-patterns were followed by another of these always nonreactive patterns within one day, mainly alpha-coma-EEG (n = 10) and continuous generalized epileptiform discharges (n = 9). Serial recordings disclosed a variety of EEG-sequences composed of these EEG-patterns, finally leading to isoelectric or flat recordings. Forty-five patients died within 2 weeks, 5 patients survived and remained in a permanent vegetative state. CONCLUSION: Generalized myoclonus in comatose survivors of CPR still implies a poor outcome despite advances in critical care medicine. Anticonvulsive drugs are usually ineffective. All postanoxic EEG-patterns are transient and followed by a variety of EEG sequences composed of different EEG patterns, each of which is recognized as an unfavourable sign. Different EEG-patterns in anoxic encephalopathy may reflect different forms of neocortical dysfunction, which occur at different stages of a dynamic process finally leading to severe neuronal loss
The clinical features of the piriformis syndrome: a systematic review
Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis
- …