100 research outputs found

    Influence of Hyper-Alkaline pH Leachate on Mineral and Porosity Evolution in the Chemically Disturbed Zone Developed in the Near-Field Host Rock for a Nuclear Waste Repository

    Get PDF
    This paper evaluates the effect of hyper-alkaline (NaOH/KOH) leachate on the mineralogy and porosity of a generic quartzo-feldspathic host rock for intermediate- and low-level nuclear waste disposal following permeation of the cementitious repository barrier by groundwater. The analysis is made with reference to expected fluid compositions that may develop by contact of groundwater with the cementitious barrier to form a chemically disturbed zone (CDZ) in the adjacent host rock, as informed by relevant natural analogue sites. Theoretical analysis and numerical modelling is used to explore the influence of different host rock mineral assemblages on changes in pore fluid chemistry, multiple mineral dissolution and precipitation reactions and matrix porosity within the CDZ under these conditions. The numerical modelling accounts for kinetic and surface area effects on the mineral transformation and porosity development for periods of up to 10,000 years travel time from the repository and ambient temperature of 20∘C. The analysis shows that dissolution of quartz, feldspar and muscovite in the host rock, by the hyper-alkaline waste leachate, will create relatively high concentrations of dissolved Si and Al in the pore fluid, which migrates as chemical fronts within the CDZ. Precipitation of secondary mineral phases is predicted to occur under these conditions. The increase in matrix porosity that arises from dissolution of primary aluminosilicate minerals is compensated by a reduction in porosity due to precipitation of the secondary phases, but with a net overall increase in matrix porosity. These coupled physical and geochemical processes are most important for contaminant transport in the near-field zone of the CDZ and are eventually buffered by the host rock within 70 m of the repository for the 10,000 year travel time scenario. The predicted changes in matrix porosity may contribute to increased transport of radionuclides in the host rock, in the absence of attenuation by other mechanisms in the CDZ

    Sodium Silicate Behavior in Porous Media Applied for In-Depth Profile Modifications

    No full text
    This paper addresses alkaline sodium silicate (Na-silicate) behavior in porous media. One of the advantages of the Na-silicate system is its water-like injectivity during the placement stage. Mixing Na-silicate with saline water results in metal silicate precipitation as well as immediate gelation. This work demonstrated that low salinity water (LSW, sea water diluted 25 times) could be used as a pre-flush in flooding operations. A water override phenomenon was observed during gel formation which is caused by gravity segregation. Dynamic adsorption tests in the sand-packed tubes showed inconsiderable adsorbed silicon density (about 8.5 × 10−10 kg/cm3 for a solution with 33 mg/L silicon content), which is less than the estimated mono-layer adsorption density of 1.4 × 10−8 kg/cm3. Na-silicate enhanced water sweep efficiency after application in a dual-permeability sand-pack system, without leak off into the oil-bearing low permeability (LP) zone. Field-scale numerical sensitivity studies in a layered reservoir demonstrated that higher permeability and viscosity contrasts and lower vertical/horizontal permeability ratio result in lower Na-silicate leakoff into the matrix. The length of the mixing zone between reservoir water and the injected Na-silicate solution, which is formed by low salinity pre-flush, acts as a buffer zone
    corecore