166 research outputs found

    Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders

    Get PDF
    Non-transferrin-bound iron and its labile (redox active) plasma iron component are thought to be potentially toxic forms of iron originally identified in the serum of patients with iron overload. We compared ten worldwide leading assays (6 for non-transferrin-bound iron and 4 for labile plasma iron) as part of an international inter-laboratory study. Serum samples from 60 patients with four different iron-overload disorders in various treatment phases were coded and sent in duplicate for analysis to five different laboratories worldwide. Some laboratories provided multiple assays. Overall, highest assay levels were observed for patients with untreated hereditary hemochromatosis and beta-thalassemia intermedia, patients with transfusion-dependent myelodysplastic syndromes and patients with transfusion-dependent and chelated beta-thalassemia major. Absolute levels differed considerably between assays and were lower for labile plasma iron than for non-transferrin-bound iron. Four assays also reported negative values. Assays were reproducible with high between-sample and low within-sample variation. Assays correlated and correlations were highest within the group of non-transferrin-bound iron assays and within that of labile plasma iron assays. Increased transferrin saturation, but not ferritin, was a good indicator of the presence of forms of circulating non-transferrin-bound iron. The possibility of using non-transferrin-bound iron and labile plasma iron measures as clinical indicators of overt iron overload and/or of treatment efficacy would largely depend on the rigorous validation and standardization of assay

    Mass Spectrometry Analysis of Hepcidin Peptides in Experimental Mouse Models

    Get PDF
    The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics

    Are people following hip and knee arthroplasty at greater risk of experiencing a fall and fracture? Data from the Osteoarthritis Initiative

    Get PDF
    Introduction: Falls are a major challenge for older people and are a significant source of mortality and morbidity. There has been uncertainty as to whether people with total hip (THA) or knee (TKA) arthroplasty have a greater risk of falls and associated fractures. This analysis was to explore this question with a large community dataset. Materials and Methods: Data from all people enrolled onto the US Osteoarthritis Initiative programme who had undergone a THA (n=104) or TKA (n=165), within a 12 month period, were compared to those who had not undergone an arthroplasty (n=4631). Data was collected on: the number of participants who reported a fall within a 12 month period; the frequency of falls in this period; and whether a fracture was sustained during this period. Odd ratios were calculated for the probability of experiencing a fall or fracture between the groups. Results: There was no statistical difference in falls between people following THA (OR 0.90; 95% CI: 0.58 to 1.41) or TKA (OR: 0.95; 0.67 to 1.35) compared to a non-arthroplasty cohort. Whilst there was no statistical difference in fracture risk between people following TKA compared to non-arthroplasty individuals (OR: 1.25; 95% CI: 0.57 to 2.70), those who underwent THA had a 65% lower chance of experiencing a fracture in the initial 12 post-operative months compared to the non-THA cohort (OR 0.35; 95% CI: 0.19 to 0.65; p<0.01). Conclusions: There appears a lower chance of experiencing a fracture for people following THA compared to those who have not

    Three dimensional evaluation of posture in standing with the PosturePrint: an intra- and inter-examiner reliability study

    Get PDF
    Abstract Background Few digitizers can measure the complexity of upright human postural displacements in six degrees of freedom of the head, rib cage, and pelvis. Methods In a University laboratory, three examiners performed delayed repeated postural measurements on forty subjects over two days. Three digital photographs (left lateral, AP, right lateral) of each of 40 volunteer participants were obtained, twice, by three examiners. Examiners placed 13 markers on the subjects before photography and chose 16 points on the photographic images. Using the PosturePrint® internet computer system, head, rib cage, and pelvic postures were calculated as rotations (Rx, Ry, Rz) in degrees and translations (Tx, Tz) in millimeters. For reliability, two different types (liberal = ICC3,1 & conservative = ICC2,1) of inter- and intra-examiner correlation coefficients (ICC) were calculated. Standard error of measurements (SEM) and mean absolute differences within and between observers' measurements were also determined. Results All of the "liberal" ICCs were in the excellent range (> 0.84). For the more "conservative" type ICCs, four Inter-examiner ICCs were in the interval (0.5–0.6), 10 ICCs were in the interval (0.61–0.74), and the remainder were greater than 0.75. SEMs were 2.7° or less for all rotations and 5.9 mm or less for all translations. Mean absolute differences within examiners and between examiners were 3.5° or less for all rotations and 8.4 mm or less for all translations. Conclusion For the PosturePrint® system, the combined inter-examiner and intra-examiner correlation coefficients were in the good (14/44) and excellent (30/44) ranges. SEMs and mean absolute differences within and between examiners' measurements were small. Thus, this posture digitizer is reliable for clinical use

    Advances in Quantitative Hepcidin Measurements by Time-of-Flight Mass Spectrometry

    Get PDF
    Assays for the detection of the iron regulatory hormone hepcidin in plasma or urine have not yet been widely available, whereas quantitative comparisons between hepcidin levels in these different matrices were thus far even impossible due to technical restrictions. To circumvent these limitations, we here describe several advances in time-of flight mass spectrometry (TOF MS), the most important of which concerned spiking of a synthetic hepcidin analogue as internal standard into serum and urine samples. This serves both as a control for experimental variation, such as recovery and matrix-dependent ionization and ion suppression, and at the same time allows value assignment to the measured hepcidin peak intensities. The assay improvements were clinically evaluated using samples from various patients groups and its relevance was further underscored by the significant correlation of serum hepcidin levels with serum iron indices in healthy individuals. Most importantly, this approach allowed kinetic studies as illustrated by the paired analyses of serum and urine samples, showing that more than 97% of the freely filtered serum hepcidin can be reabsorbed in the kidney. Thus, the here reported advances in TOF MS-based hepcidin measurements represent critical steps in the accurate quantification of hepcidin in various body fluids and pave the way for clinical studies on the kinetic behavior of hepcidin in both healthy and diseased states

    A Novel Immunological Assay for Hepcidin Quantification in Human Serum

    Get PDF
    Contains fulltext : 81054.pdf (publisher's version ) (Open Access)BACKGROUND: Hepcidin is a 25-aminoacid cysteine-rich iron regulating peptide. Increased hepcidin concentrations lead to iron sequestration in macrophages, contributing to the pathogenesis of anaemia of chronic disease whereas decreased hepcidin is observed in iron deficiency and primary iron overload diseases such as hereditary hemochromatosis. Hepcidin quantification in human blood or urine may provide further insights for the pathogenesis of disorders of iron homeostasis and might prove a valuable tool for clinicians for the differential diagnosis of anaemia. This study describes a specific and non-operator demanding immunoassay for hepcidin quantification in human sera. METHODS AND FINDINGS: An ELISA assay was developed for measuring hepcidin serum concentration using a recombinant hepcidin25-His peptide and a polyclonal antibody against this peptide, which was able to identify native hepcidin. The ELISA assay had a detection range of 10-1500 microg/L and a detection limit of 5.4 microg/L. The intra- and interassay coefficients of variance ranged from 8-15% and 5-16%, respectively. Mean linearity and recovery were 101% and 107%, respectively. Mean hepcidin levels were significantly lower in 7 patients with juvenile hemochromatosis (12.8 microg/L) and 10 patients with iron deficiency anemia (15.7 microg/L) and higher in 7 patients with Hodgkin lymphoma (116.7 microg/L) compared to 32 age-matched healthy controls (42.7 microg/L). CONCLUSIONS: We describe a new simple ELISA assay for measuring hepcidin in human serum with sufficient accuracy and reproducibility

    Brief pain re-assessment provided more accurate prognosis than baseline information for low-back or shoulder pain

    Get PDF
    Background Research investigating prognosis in musculoskeletal pain conditions has only been moderately successful in predicting which patients are unlikely to recover. Clinical decision making could potentially be improved by combining information taken at baseline and re-consultation. Methods Data from four prospective clinical cohorts of adults presenting to UK and Dutch primary care with low-back or shoulder pain was analysed, assessing long-term disability at 6 or 12 months and including baseline and 4–6 week assessments of pain. Baseline versus short-term assessments of pain, and previously validated multivariable prediction models versus repeat assessment, were compared to assess predictive performance of long-term disability outcome. A hypothetical clinical scenario was explored which made efficient use of both baseline and repeated assessment to identify patients likely to have a poor prognosis and decide on further treatment. Results Short-term repeat assessment of pain was better than short-term change or baseline score at predicting long-term disability improvement across all cohorts. Short-term repeat assessment of pain was only slightly more predictive of long-term recovery (c-statistics 0.78, 95% CI 0.74 to 0.83 and 0.75, 95% CI 0.69 to 0.82) than a multivariable baseline prognostic model in the two cohorts presenting such a model (c-statistics 0.71, 95% CI 0.67 to 0.76 and 0.72, 95% CI 0.66 to 0.78). Combining optimal prediction at baseline using a multivariable prognostic model with short-term repeat assessment of pain in those with uncertain prognosis in a hypothetical clinical scenario resulted in reduction in the number of patients with an uncertain probability of recovery, thereby reducing the instances where patients may be inappropriately referred or reassured. Conclusions Incorporating short-term repeat assessment of pain into prognostic models could potentially optimise the clinical usefulness of prognostic information
    • …
    corecore