27 research outputs found

    Costing climate change

    No full text

    Moving infections: individual movement decisions drive disease persistence in spatially structured landscapes

    No full text
    Understanding host–pathogen dynamics requires realistic consideration of transmission events that, in the case of directly transmitted pathogens, result from contacts between susceptible and infected individuals. The corresponding contact rates are usually heterogeneous due to variation in individual movement patterns and the underlying landscape structure. However, in epidemiological models, the roles that explicit host movements and landscape structure play in shaping contact rates are often overlooked. We adapted an established agent‐based model of classical swine fever (CSF) in wild boar Sus scrofa to investigate how explicit representation of landscape heterogeneity and host movement between social groups affects invasion and persistence probabilities. We simulated individual movement both phenomenologically as a correlated random walk (CRW) and mechanistically by representing interactions of the moving individuals with the landscape and host population structure. The effect of landscape structure on the probability of invasion success and disease persistence depended remarkably on the way host movement is simulated and the case fatality ratio associated with the pathogen strain. The persistence probabilities were generally low with CRW which ignores feedbacks to external factors. Although the basic reproduction number R0, a measure of the contagiousness of an infectious disease, was kept constant, these probabilities were up to eight times higher under mechanistic movement rules, especially in heterogeneous landscapes. The increased persistence emerged due to important feedbacks of the directed movement on the spatial variation of host density, contact rates and transmission events to distant areas. Our findings underscore the importance of accounting for spatial context and group size structures in eco‐epidemiological models. Our study highlights that the simulation of explicit, mechanistic movement behaviour can reverse predictions of disease persistence in comparison to phenomenological rules such as random walk approaches. This can have severe consequences when predicting the probability of disease persistence and assessing control measures to prevent outbreaks

    Population genetic structure of Aldabra giant tortoises

    Get PDF
    Evolution of population structure on islands is the result of physical processes linked to volcanism, orogenic events, changes in sea level, as well as habitat variation. We assessed patterns of genetic structure in the giant tortoise of the Aldabra atoll, where previous ecological studies suggested population subdivisions as a result of landscape discontinuity due to unsuitable habitat and island separation. Analysis of mitochondrial DNA (mtDNA) control region sequences and allelic variation at 8 microsatellite loci were conducted on tortoises sampled in 3 locations on the 2 major islands of Aldabra. We found no variation in mtDNA sequences. This pattern corroborated earlier work supporting the occurrence of a founding event during the last interglacial period and a further reduction in genetic variability during historical time. On the other hand, significant population structure recorded at nuclear loci suggested allopatric divergence possibly due to geographical barriers among islands and ecological partitions hindering tortoise movements within islands. This is the first attempt to study the population genetics of Aldabra tortoises, which are now at carrying capacity in an isolated terrestrial ecosystem where ecological factors appear to have a strong influence on population dynamics

    Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis)

    No full text
    Ecological invasions, where non-native species spread to new areas, grow to high densities and have large, negative impacts on ecological communities, are a major worldwide problem. Recent studies suggest that one of the key mechanisms influencing invasion dynamics is personality-dependent dispersal: the tendency for dispersers to have a different personality type than the average from a source population. We examined this possibility in the invasive mosquitofish (Gambusia affinis). We measured individual tendencies to disperse in experimental streams and several personality traits: sociability, boldness, activity and exploration tendency before and three weeks after dispersal. We found that mosquitofish display consistent behavioural tendencies over time, and significant positive correlations between all personality traits. Most notably, sociability was an important indicator of dispersal distance, with more asocial individuals dispersing further, suggesting personality-biased dispersal on an invasion front. These results could have important ecological implications, as invasion by a biased subset of individuals is likely to have different ecological impacts than invasion by a random group of colonists

    Animal conservation, carbon and sustainability

    No full text
    International conventions to reduce carbon dioxide levels focus on ecosystems and do not specifically recognize the need to conserve species. However, species are the building blocks of ecosystems, they are more widely understood among the public, and they provide means of capturing market values from ecosystems. Achieving successful conservation globally will require ensuring that the systems under which species and ecosystems are conserved axe more inclusive than statutory protected areas. Equal emphasis needs to be placed on including effective regimes that also encompass private and communal ownership through incentive-based approaches. Nevertheless, if globalized industries such as nature-based tourism or consumptive use are to provide meaningful incentives locally, a key requirement is to reduce leakage of revenue that is earned as a result of conserving species, such that local development concerns are addressed. However, current biodiversity conventions that address these needs are largely aspirational, while globalized industries such as tourism mainly promote their green credentials only through voluntary codes of conduct. Greatly improved linkages are needed between international conservation concerns and ensuring effective solutions to sustainability, which inevitably rest at national and sub-national levels, through systems of rights, tenure, benefits and incentives

    Underwater video reveals decreased activity of rocky intertidal snails during high tides and cooler days

    No full text
    Nearly all of our understanding of rocky inter-tidal ecology comes from studies conducted at low tide. To study inter-tidal organisms at high tide, we anchored waterproof digital GoProÂź video cameras in wave-exposed tidepools and recorded the daytime movements of the black turban snail, Tegula funebralis, over the tidal cycle between May and August 2012 near Bodega Bay, California. Overall, snails moved more quickly and presumably foraged more during low tides and on days with warmer air and perhaps water temperatures. This is similar to other ectotherms that exhibit increased metabolic rates, movement and foraging in warmer conditions. Snails also moved less during flood and high tides, may have moved downward in tidepools at flood tides, and showed evidence of reduced activity on days with larger waves. This inactivity and refuge seeking may have been a strategy to avoid dislodgment by waves. Analysis of snail trajectories showed foraging bouts indicated by alternating zig-zagging and straight movement. There was no effect of temperature, wave height, or tidal phase on distribution of snail turning angles, suggesting that they may have foraged consistently but moved faster during warm conditions and low tides, thereby grazing a larger area. This is one of few direct recordings of inter-tidal organisms on wave-exposed rocky shores during high tide. The methods used here are easily transferable to other studies, which are needed to increase our understanding of behaviors that structure rocky shore communities during high tide
    corecore