853 research outputs found
Active Listening by Hospital Chaplaincy Volunteers: Benefits, Challenges and Good Practice
Active listening (AL) is a communication technique frequently used in counselling. This study explored the feasibility of implementing a ward-based AL intervention for patients by chaplaincy volunteers in the UK National Health Service. Seven focus groups (n=47) included healthcare researchers, lecturers, nurses, patients, AL tutors, active listeners volunteers and chaplaincy volunteers. Acceptability and perceived effectiveness of a patient/volunteer listener intervention were explored. Analysis followed the framework approach. Four themes emerged: (a) Listening as a wellbeing generator; (b) Benefits of AL delivered by volunteers; (c) Spirituality and public perceptions of hospital chaplaincy; (d) Challenges of structured communication techniques in acute care. Participants reported positive attitudes towards the introduction of AL provided by volunteers in acute wards. They shared a common belief that when people are listened to, wellbeing improves through control, choice and empowerment. Patients’ acceptability of the intervention increased if it was delivered by volunteers
Design of passive vehicle suspensions for maximal least damping ratio
This paper studies the use of the least damping ratio among system poles as a performance metric in passive vehicle suspensions. Methods are developed which allow optimal solutions to be computed in terms of non-dimensional quantities in a quarter-car vehicle model. Solutions are provided in graphical form for convenient use across vehicle types. Three suspension arrangements are studied: the standard suspension involving a parallel spring and damper and two further suspension arrangements involving an inerter. The key parameters for the optimal solutions are the ratios of unsprung mass to sprung mass and suspension static stiffness to tyre vertical stiffness. A discussion is provided of performance trends in terms of the key parameters. A comparison is made with the optimisation of ride comfort and tyre grip metrics for various vehicle types.This work was supported by the Engineering and Physical Sciences Research Council grant numbers EP/F062656/1 and EP/G066477/1.This is the final version of the article. It first appeared from Taylor & Francis via https://doi.org/10.1080/00423114.2016.114524
Multi-membership gene regulation in pathway based microarray analysis
This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit
Inelastic response of silicon to shock compression
The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported 'anomalous' elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature
Loss of regulation of protein synthesis and turnover underpins an attenuated stress response in senescent human mesenchymal stem cells
Cells respond to stress by synthesizing chaperone proteins that seek to correct protein misfolding and maintain function. However, abrogation of protein homeostasis is a hallmark of aging, leading to loss of function and the formation of proteotoxic aggregates characteristic of pathology. Consequently, discovering the underlying molecular causes of this deterioration in proteostasis is key to designing effective interventions to disease or to maintaining cell health in regenerative medicine strategies. Here, we examined primary human mesenchymal stem cells, cultured to a point of replicative senescence and subjected to heat shock, as an in vitro model of the aging stress response. Multi -omics analysis showed how homeostasis components were reduced in senescent cells, caused by dysregulation of a functional network of chaperones, thereby limiting proteostatic competence. Time-resolved analysis of the primary response factors, including those regulating heat shock protein 70 kDa (HSPA1A), revealed that regulatory control is essentially translational. Senescent cells have a reduced capacity for chaperone protein translation and misfolded protein (MFP) turnover, driven by downregulation of ribosomal proteins and loss of the E3 ubiquitin ligase CHIP (C-terminus of HSP70 interacting protein) which marks MFPs for degradation. This limits the cell’s stress response and subsequent recovery. A kinetic model recapitulated these reduced capacities and predicted an accumulation of MFP, a hypothesis supported by evidence of systematic changes to the proteomic fold state. These results thus establish a specific loss of regulatory capacity at the protein, rather than transcript, level and uncover underlying systematic links between aging and loss of protein homeostasis.</jats:p
Modeling the pharmacodynamics of passive membrane permeability
Small molecule permeability through cellular membranes is critical to a better understanding of pharmacodynamics and the drug discovery endeavor. Such permeability may be estimated as a function of the free energy change of barrier crossing by invoking the barrier domain model, which posits that permeation is limited by passage through a single “barrier domain” and assumes diffusivity differences among compounds of similar structure are negligible. Inspired by the work of Rezai and co-workers (JACS 128:14073–14080, 2006), we estimate this free energy change as the difference in implicit solvation free energies in chloroform and water, but extend their model to include solute conformational affects. Using a set of eleven structurally diverse FDA approved compounds and a set of thirteen congeneric molecules, we show that the solvation free energies are dominated by the global minima, which allows solute conformational distributions to be effectively neglected. For the set of tested compounds, the best correlation with experiment is obtained when the implicit chloroform global minimum is used to evaluate the solvation free energy difference
Patterns of impact resulting from a 'sit less, move more' web-based program in sedentary office employees.
PURPOSE: Encouraging office workers to 'sit less and move more' encompasses two public health priorities. However, there is little evidence on the effectiveness of workplace interventions for reducing sitting, even less about the longer term effects of such interventions and still less on dual-focused interventions. This study assessed the short and mid-term impacts of a workplace web-based intervention (Walk@WorkSpain, W@WS; 2010-11) on self-reported sitting time, step counts and physical risk factors (waist circumference, BMI, blood pressure) for chronic disease. METHODS: Employees at six Spanish university campuses (n=264; 42±10 years; 171 female) were randomly assigned by worksite and campus to an Intervention (used W@WS; n=129; 87 female) or a Comparison group (maintained normal behavior; n=135; 84 female). This phased, 19-week program aimed to decrease occupational sitting time through increased incidental movement and short walks. A linear mixed model assessed changes in outcome measures between the baseline, ramping (8 weeks), maintenance (11 weeks) and follow-up (two months) phases for Intervention versus Comparison groups. RESULTS: A significant 2 (group) × 2 (program phases) interaction was found for self-reported occupational sitting (F[3]=7.97, p=0.046), daily step counts (F[3]=15.68, p=0.0013) and waist circumference (F[3]=11.67, p=0.0086). The Intervention group decreased minutes of daily occupational sitting while also increasing step counts from baseline (446±126; 8,862±2,475) through ramping (+425±120; 9,345±2,435), maintenance (+422±123; 9,638±3,131) and follow-up (+414±129; 9,786±3,205). In the Comparison group, compared to baseline (404±106), sitting time remained unchanged through ramping and maintenance, but decreased at follow-up (-388±120), while step counts diminished across all phases. The Intervention group significantly reduced waist circumference by 2.1cms from baseline to follow-up while the Comparison group reduced waist circumference by 1.3cms over the same period. CONCLUSIONS: W@WS is a feasible and effective evidence-based intervention that can be successfully deployed with sedentary employees to elicit sustained changes on "sitting less and moving more"
Foot pain and foot health in an educated population of adults: results from the Glasgow Caledonian University Alumni Foot Health Survey
Abstract Background Foot pain is common amongst the general population and impacts negatively on physical function and quality of life. Associations between personal health characteristics, lifestyle/behaviour factors and foot pain have been studied; however, the role of wider determinants of health on foot pain have received relatively little attention. Objectives of this study are i) to describe foot pain and foot health characteristics in an educated population of adults; ii) to explore associations between moderate-to-severe foot pain and a variety of factors including gender, age, medical conditions/co-morbidity/multi-morbidity, key indicators of general health, foot pathologies, and social determinants of health; and iii) to evaluate associations between moderate-to-severe foot pain and foot function, foot health and health-related quality-of-life. Methods Between February and March 2018, Glasgow Caledonian University Alumni with a working email address were invited to participate in the cross-sectional electronic survey (anonymously) by email via the Glasgow Caledonian University Alumni Office. The survey was constructed using the REDCap secure web online survey application and sought information on presence/absence of moderate-to-severe foot pain, patient characteristics (age, body mass index, socioeconomic status, occupation class, comorbidities, and foot pathologies). Prevalence data were expressed as absolute frequencies and percentages. Multivariate logistic and linear regressions were undertaken to identify associations 1) between independent variables and moderate-to-severe foot pain, and 2) between moderate-to-severe foot pain and foot function, foot health and health-related quality of life. Results Of 50,228 invitations distributed, there were 7707 unique views and 593 valid completions (median age [inter-quartile range] 42 [31–52], 67.3% female) of the survey (7.7% response rate). The sample was comprised predominantly of white Scottish/British (89.4%) working age adults (95%), the majority of whom were overweight or obese (57.9%), and in either full-time or part-time employment (82.5%) as professionals (72.5%). Over two-thirds (68.5%) of the sample were classified in the highest 6 deciles (most affluent) of social deprivation. Moderate-to-severe foot pain affected 236/593 respondents (39.8%). High body mass index, presence of bunions, back pain, rheumatoid arthritis, hip pain and lower occupation class were included in the final multivariate model and all were significantly and independently associated with moderate-to-severe foot pain (p < 0.05), except for rheumatoid arthritis (p = 0.057). Moderate-to-severe foot pain was significantly and independently associated lower foot function, foot health and health-related quality of life scores following adjustment for age, gender and body mass index (p < 0.05). Conclusions Moderate-to-severe foot pain was highly prevalent in a university-educated population and was independently associated with female gender, high body mass index, bunions, back pain, hip pain and lower occupational class. Presence of moderate-to-severe foot pain was associated with worse scores for foot function, foot health and health-related quality-of-life. Education attainment does not appear to be protective against moderate-to-severe foot pain
Spatio-temporal Models of Lymphangiogenesis in Wound Healing
Several studies suggest that one possible cause of impaired wound healing is
failed or insufficient lymphangiogenesis, that is the formation of new
lymphatic capillaries. Although many mathematical models have been developed to
describe the formation of blood capillaries (angiogenesis), very few have been
proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a
markedly different process from angiogenesis, occurring at different times and
in response to different chemical stimuli. Two main hypotheses have been
proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the
edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic
endothelial cells first pool in the wound region following the lymph flow and
then, once sufficiently populated, start to form a network. Here we present two
PDE models describing lymphangiogenesis according to these two different
hypotheses. Further, we include the effect of advection due to interstitial
flow and lymph flow coming from open capillaries. The variables represent
different cell densities and growth factor concentrations, and where possible
the parameters are estimated from biological data. The models are then solved
numerically and the results are compared with the available biological
literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total
Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion
Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel- and cone-like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC-associated protein Tpr and its large coiled coil-forming domain. RNAi-mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub-compartment and delimiting heterochromatin distribution
- …