9 research outputs found

    Orthoretroviral-like prototype foamy virus gag-pol expression is compatible with viral replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Foamy viruses (FVs) unlike orthoretroviruses express Pol as a separate precursor protein and not as a Gag-Pol fusion protein. A unique packaging strategy, involving recognition of briding viral RNA by both Pol precursor and Gag as well as potential Gag-Pol protein interactions, ensures Pol particle encapsidation.</p> <p>Results</p> <p>Several Prototype FV (PFV) Gag-Pol fusion protein constructs were generated to examine whether PFV replication is compatible with an orthoretroviral-like Pol expression. During their analysis, non-particle-associated secreted Pol precursor protein was discovered in extracellular wild type PFV particle preparations of different origin, copurifying in simple virion enrichment protocols. Different analysis methods suggest that extracellular wild type PFV particles contain predominantly mature p85<sup>PR-RT </sup>and p40<sup>IN </sup>Pol subunits. Characterization of various PFV Gag-Pol fusion constructs revealed that PFV Pol expression in an orthoretroviral manner is compatible with PFV replication as long as a proteolytic processing between Gag and Pol proteins is possible. PFV Gag-Pol translation by a HIV-1 like ribosomal frameshift signal resulted in production of replication-competent virions, although cell- and particle-associated Pol levels were reduced in comparison to wild type. In-frame fusion of PFV Gag and Pol ORFs led to increased cellular Pol levels, but particle incorporation was only marginally elevated. Unlike that reported for similar orthoretroviral constructs, a full-length in-frame PFV Gag-Pol fusion construct showed wildtype-like particle release and infectivity characteristics. In contrast, in-frame PFV Gag-Pol fusion with C-terminal Gag ORF truncations or non-removable Gag peptide addition to Pol displayed wildtype particle release, but reduced particle infectivity. PFV Gag-Pol precursor fusion proteins with inactivated protease were highly deficient in regular particle release, although coexpression of p71<sup>Gag </sup>resulted in a significant copackaging of these proteins.</p> <p>Conclusions</p> <p>Non-particle associated PFV Pol appears to be naturally released from infected cells by a yet unknown mechanism. The absence of particle-associated Pol precursor suggests its rapid processing upon particle incorporation. Analysis of different PFV Gag-Pol fusion constructs demonstrates that orthoretroviral-like Pol expression is compatible with FV replication in principal as long as fusion protein processing is possible. Furthermore, unlike orthoretroviruses, PFV particle release and infectivity tolerate larger differences in relative cellular Gag/Pol levels.</p

    Thermal activation of catalytic microjets in blood samples using microfluidic chips

    Get PDF
    We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room tem perature, the catalytic microjet s can b activatedat physiological temperature and, consequently, selfpropelin diluted solutions of blood samples. We prove thatthese microjets self-propel in 10× diluted blood samples usingmicrofluidic chips.European Commission European Community's Seventh Framework Program Volkswagen Foundation (# 86 362

    Analysis of Prototype Foamy Virus particle-host cell interaction with autofluorescent retroviral particles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive.</p> <p>Results</p> <p>In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction.</p> <p>Conclusions</p> <p>We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.</p

    Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis

    Get PDF
    Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 has been assigned as a key player of neuronal differentiation via its complex but little understood regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human induced pluripotent stem cells. Upon neuronal induction, miR-124-deleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. Using RNA-induced-silencing-complex precipitation, we identified 98 high-confidence miR-124 targets, of which some directly led to decreased viability. By performing advanced transcription-factor-network analysis, we identified indirect miR-124 effects on apoptosis, neuronal subtype differentiation, and the regulation of previously uncharacterized zinc finger transcription factors. Our data emphasize the need for combined experimental- and system-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain

    Biophysical Properties of Optogenetic Tools and Their Application for Vision Restoration Approaches

    No full text
    Optogenetics is the use of genetically encoded light-activated proteins to manipulate cells in a minimally invasive way using light. The most prominent example is channelrhodopsin-2 (ChR2), which allows the activation of electrically excitable cells via light-dependent depolarization. The combination of ChR2 with hyperpolarizing-light-driven ion pumps such as the Cl<sup>−</sup> pump halorhodopsin (NpHR) enables multimodal remote control of neuronal cells in culture, tissue, and living animals. Very soon, it became obvious that this method offers a chance of gene therapy for many diseases affecting vision. Here, we will give a brief introduction to retinal function and retinal diseases; optogenetic vision restoration strategies will be highlighted. We will discuss the functional and structural properties of rhodopsin-based optogenetic tools and analyze the potential for the application of vision restoratio

    On-demand optogenetic activation of human stem-cell-derived neurons

    No full text
    The widespread application of human stem-cell-derived neurons for functional studies is impeded by complicated differentiation protocols, immaturity, and deficient optogene expression as stem cells frequently lose transgene expression over time. Here we report a simple but precise Cre-loxP-based strategy for generating conditional, and thereby stable, optogenetic human stem-cell lines. These cells can be easily and efficiently differentiated into functional neurons, and optogene expression can be triggered by administering Cre protein to the cultures. This conditional expression system may be applied to stem-cell-derived neurons whenever timed transgene expression could help to overcome silencing at the stem-cell level
    corecore