2,146 research outputs found

    Evidence of the excitation of a ring-like gravity wave in the mesosphere over the Andes Lidar Observatory

    Get PDF
    On 23 March 2012, our all-sky imager recorded a concentric, ring-like gravity wave pattern. The wave arose within the area covered by images of both OH and O(1S) nightglow emissions taken at the Andes Lidar Observatory (ALO), Chile (30.3ÁS, 70.7ÁW). We have estimated the observed and intrinsic parameters of the event and located the wave source within the lower mesosphere altitude range using a reverse ray tracing method. By the analysis of GOES and LIS satellite images, we have not found evidence of neither convective nor lightning activity nearby ALO, indicating that the source of the ring-like wave was not directly in the troposphere. The absence of tropospheric activity and the height of the source of the event suggest that a secondary wave generation mechanism might be the cause of the ring-like wave. The secondary wave mechanism was likely triggered by a breaking, larger-scale primary wave excited by deep convection _1400ækm northeast of ALO over Bolivia, as determined by a forward ray tracing scheme. ©2016. American Geophysical Union. All Rights Reserved

    Pleistocene Histroy of Mississippi River (Abstract)

    Get PDF
    From its earliest known record immediately prior to the advance of the Nebraskan glacier to the present time the course of Mississippi River was affected by each advancing ice sheet in turn. The Nebraskan glacier displaced it to the east, the Kansan glacier shoved it farther east, the Illinoian glacier pushed it back west, with the retreat of the Illinoian ice it took an easterly course again, the Iowan or earliest Wisconsin glacier diverted it from one minor channel to another, the Green River lobe of the Tazewell Wisconsin ice sheet forced it back into a western course and started the Rock Island rapids, and the latest Wisconsin or Mankato invasion resulted in a great fill and the details of the course as it now is

    Development of Lumped Element Kinetic Inductance Detectors for NIKA

    Get PDF
    Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the N\'eel Iram Kids Array (NIKA) collaboration has been to investigate the suitability of these detectors for deployment at the 30-meter IRAM telescope located on Pico Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID), using quarter wavelength resonators, the resonant circuit of a LEKID consists of a discrete inductance and capacitance coupled to a feedline. A high and constant current density distribution in the inductive part of these resonators makes them very sensitive. Due to only one metal layer on a silicon substrate, the fabrication is relatively easy. In order to optimize the LEKIDs for this application, we have recently probed a wide variety of individual resonator and array parameters through simulation and physical testing. This included determining the optimal feed-line coupling, pixel geometry, resonator distribution within an array (in order to minimize pixel cross-talk), and resonator frequency spacing. Based on these results, a 144-pixel Aluminum array was fabricated and tested in a dilution fridge with optical access, yielding an average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2 under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2 polarizations will be presented. Also first optical measurements of a titanium nitride array will be discussed.Comment: 5 pages, 12 figures; ISSTT 2011 Worksho

    Electronics and data acquisition demonstrator for a kinetic inductance camera

    Full text link
    A prototype of digital frequency multiplexing electronics allowing the real time monitoring of kinetic inductance detector (KIDs) arrays for mm-wave astronomy has been developed. It requires only 2 coaxial cables for instrumenting a large array. For that, an excitation comb of frequencies is generated and fed through the detector. The direct frequency synthesis and the data acquisition relies heavily on a large FPGA using parallelized and pipelined processing. The prototype can instrument 128 resonators (pixels) over a bandwidth of 125 MHz. This paper describes the technical solution chosen, the algorithm used and the results obtained

    Investigation of a Wall Wave Event

    Get PDF
    A bright airglow event was observed at Maui, Hawaii, on the night of 11–12 August 2004 with multiple instruments including a Na wind/temperature lidar, an airglow imager, and a mesospheric temperature mapper. The characteristics of this event were investigated with measurements from these instruments. Analysis showed that this event was caused by a large-amplitude, upward-propagating gravity wave with a period of about 4–5 hours and a vertical wavelength of about 20 km, i.e., a ‘‘wall’’ wave. This wall wave induced dramatic changes in temperature (60 K), airglow intensity (doubled in the OH and tripled in the O2 emissions), and Na abundance (tripled). It experienced strong dissipation and induced large downward heat flux with values about an order of magnitude larger than the annual mean. The wave also carried large momentum flux (70 m2 s2)

    Arago (1810): the first experimental result against the ether

    Get PDF
    95 years before Special Relativity was born, Arago attempted to detect the absolute motion of the Earth by measuring the deflection of starlight passing through a prism fixed to the Earth. The null result of this experiment gave rise to the Fresnel's hypothesis of an ether partly dragged by a moving substance. In the context of Einstein's Relativity, the sole frame which is privileged in Arago's experiment is the proper frame of the prism, and the null result only says that Snell's law is valid in that frame. We revisit the history of this premature first evidence against the ether theory and calculate the Fresnel's dragging coefficient by applying the Huygens' construction in the frame of the prism. We expose the dissimilar treatment received by the ray and the wave front as an unavoidable consequence of the classical notions of space and time.Comment: 16 pages. To appear in European Journal of Physic

    Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areas

    Get PDF
    This paper uses meta-analysis of published data and a deterministic mathematical model of hepatitis B virus (HBV) transmission to describe the patterns of HBV infection in high endemicity areas. We describe the association between the prevalence of carriers and a simple measure of the rate of infection, the age at which half the population have been infected (A50), and assess the contribution of horizontal and perinatal transmission to this association. We found that the two main hyper-endemic areas of sub-Saharan Africa and east Asia have similar prevalences of carriers and values of A50, and that there is a negative nonlinear relationship between A50 and the prevalence of carriers in high endemicity areas (Spearman's Rank, P = 0·0086). We quantified the risk of perinatal transmission and the age-dependent rate of infection to allow a comparison between the main hyper-endemic areas. East Asia was found to have higher prevalences of HBeAg positive mothers and a greater risk of perinatal transmission from HBeAg positive mothers than sub-Saharan Africa, though the differences were not statistically significant. However, the two areas have similar magnitudes and age-dependent rates of horizontal transmission. Results of a simple compartmental model suggest that similar rates of horizontal transmission are sufficient to generate the similar patterns between A50 and the prevalences of carriers. Interrupting horizontal transmission by mass immunization is expected to have a significant, nonlinear impact on the rate of acquisition of new carriers
    corecore