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This study evaluates the performance of two widely used GRACE solutions (CNES/GRGS 

RL02 and CSR RL04) in deriving annual and inter-annual water mass variations in the Black 

Sea for the period 2003-2007. It is demonstrated that the GRACE derived water mass 

variations in the Black Sea are heavily influenced by the leakage of hydrological signals from 

the surrounding land. After applying the corresponding correction, we found a good 

agreement with water mass variations derived from steric corrected satellite altimetry 

observations. Both GRACE and altimetry show significant annual water mass variations of 

roughly 7 cm amplitude peaking in May and a semi-annual signal of roughly 3 cm peaking in 

June and in December. The amplitude of the annual water mass signal varies significantly 

from year to year and is significantly larger during 2004-2006 than in 2003 and 2007. This is 

also in agreement with the steric corrected altimetry.  
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1. INTRODUCTION 

Since the launch of the GRACE twin satellites, results obtained from the analyses of GRACE-

based models have improved the understanding of mass variations and mass transports in the 

Earth system, which includes processes in the oceans, atmosphere, hydrosphere, cryosphere 

and geosphere. In spite of numereous results published in recent years 

(http://www.csr.utexas.edu/grace/publications/citation.html), the quality of GRACE-based 

models is still the subject of investigation, due to the fact that the ability of GRACE to 

recover mass variations in a region is of major importance for application to studies such as 

terrestrial water storage (e.g., Tapley et al. 2004; Wahr et al. 2004) and non-steric sea level 

change (Chambers et al. 2004; Fenoglio-Marc et al. 2006; Swenson and Wahr 2007).   

 

In this study, we evaluate the ability of two recent GRACE-based models to recover the 

annual and inter-annual water mass (WM) variations in the Black Sea including the Azov Sea. 

GRACE-based models from the Center for Space Research at the University of Texas (CSR) 

and from the Centre National d’ötudes Spatiales and Groupe de Recherche en Géodesie 

Spatiale (CNES/GRGS) are used. These two GRACE solutions were selected because they 

are widely used and produced using different techniques. The CSR solutions require 

destriping, such as with the decorrelation filter used by Swenson and Wahr (2006), and 

Gaussian smoothing to remove the residual spatial noise after decorrelation filtering (Chen et 

al. 2008a). However, any smoothing attenuates the signal and introduces a leakage effect from 

surrounding regions. Consequently an investigation of the optimal choice of the radius for the 

Gaussian smoothing for the region was carried out. CNES/GRGS constrained GRACE 

solutions, on the other hand, do not suffer from the striping effect. This is because the 

CNES/GRGS coefficients have been computed with a constraint towards a mean gravity field 

that optimally reduces the short-wavelength striping of the solutions (Lemoine et al. 2007). 
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Steric corrected Jason-1 satellite altimetry data are used as an independent method of 

assessing the performance of these two GRACE-based models. 

 

The Black Sea is an interesting study area because it has relatively strong temporal WM 

variations. Furthermore, altimetry data in the Black Sea can be used as an independent tool 

for the evaluation of GRACE-based models. The wide drainage area of the Black Sea (Figure 

1) covers a large part of Europe and Asia and provides a total fresh water supply of about 350 

km3 yr-1 (Ozsoy and Unluata 1998). River runoff affects the physical characteristics of the 

sea, and is strongly dependent on the hydrological cycle over continental Europe (Stanev et al. 

2002). The large river runoff into the Black Sea changes from year to year and has also a 

semi-annual component. Therefore, not only the annual but also the semi-annual and the 

inter-annual components of WM variability of the Black Sea are analyzed.     

 

The leakage effect of land hydrology on the WM variations of the Black Sea is initially 

quantified using a land hydrology model. Subsequently, the leakage effects on the two 

GRACE solutions are estimated and used to correct them before the WM variations are 

derived. Finally, the annual, semi-annual and inter-annual variability is quantified and 

compared with Jason-1 based estimates.  

2. DATA AND PROCESSING 

2.1. GRACE Level-2 Products 

Our GRACE time series are from the CNES/GRGS Release-02 (RL02) and CSR Release-04 

(RL04) solutions. CNES/GRGS solutions include one hundred and seventy-one 10-day 

gravity field solutions expressed in normalized Spherical Harmonic (SH) geopotential 

coefficients from degree 2 up to degree and order 50, covering the period from 03 March 
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2003 to 29 December 2007. CSR solutions include fifty-seven monthly gravity field solutions 

for the period March 2003 to December 2007, supplied as normalized SH geopotential 

coefficients from degree 2 up to degree and order 60. CNES/GRGS solutions are stabilized 

towards the EIGEN-GRGS.RL02.MEAN-FIELD mean gravity field at each given epoch, 

with a constraint law that depends on the degree and order of each coefficient 

(http://bgi.cnes.fr:8110/geoid-variations/README.html). Monthly means from the 10-day 

solutions are derived by averaging to be consistent with the temporal resolution of the CSR 

solutions.  

 

The SH coefficients of CSR level-2 monthly solutions from degree 2 up to degree and order 

50 are used to be consistent with the CNES/GRGS GRACE solutions. The data are 

decorrelated by applying a modified version of the Swenson and Wahr (2006) decorrelation 

filter called P4M6 (Chen et al. 2007; Chen et al. 2008b). For a given SH of order 6 and above, 

this filter fits a polynomial of order 4 and removes this from even and odd pairs of 

coefficients. Finally, Gaussian smoothing (Jekeli 1981) is applied. We test various radii for 

the Gaussian function, from 500 km to 0 km in order to evaluate which represents the best 

agreement wih steric corrected altimetry in the Black Sea.   

 

 Since the degree-one coefficients are not part of these GRACE solutions, an estimate of 

geocenter motion (Swenson et al. 2008) is added to both GRACE solutions to account for the 

degree-one components of the gravity field. For both GRACE solutions, atmospheric pressure 

variations over land and ocean tides have been removed using the European Centre for 

Meteorological Weather Forecasting (ECMWF) model (http://www.ecmwf.int) and the Finite 

Element Solution 2004 (FES2004) (Lyard et al. 2006) model respectively. Barotropic ocean 

signals have been removed from CNES/GRGS solutions using the MOG2D-G barotropic 

ocean model (Carrère and Lyard 2003). The monthly averages of the MOG2D-G barotropic 
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ocean model output should in principle be restored in the CNES/GRGS monthly solutions 

since we are interested in the total ocean mass signal (Lombard et al 2007). However we do 

not do that because the applied version of the MOG2D-G model does not cover the Black Sea 

(Lemoine, personal communication, 2009).  

 

The Ocean Model for Circulation and Tides (OMCT) baroclinic model (Bettadpur 2007; 

Flechtner 2007) have been used to remove non-tidal short-term oceanic mass variations from 

the CSR RL04 solutions (Bettadpur 2007). In order to make the CSR solutions consistent with 

CNES/GRGS solutions, the monthly averages of the short-term non-tidal oceanic contribution 

are restored to CSR solutions using the CSR RL04 GAD products (Bettadpur 2007). 

 

2.2. Scaling Factors for GRACE Derived WM Variations  

 

The Black Sea basin-averaged WM variations from the two GRACE solutions are derived 

using averaging kernels (Swenson and Wahr 2002). The averaging kernel used is constructed 

by expanding the Black Sea land-sea mask into SH up to degree and order 50 (Figure 2). The 

mask is defined as 1 at points inside the Black Sea and 0 outside of it.  

 

Various processing steps, such as the truncation of the spherical harmonic expansion, 

decorrelation filtering and smoothing will tend to reduce the amplitude of the real signal. In 

order to investigate this, scaling factors were estimated by simulating a uniform 1 cm 

synthetic mass signal of the Black Sea, processing it in the same manner as the GRACE 

solutions and comparing the retrieved signal with the original one. After expanding the 

synthetic signal into SH up to degree and order 50, we obtained 0.65 cm. Therefore a factor of 

1.53 (1/0.65) is used to scale basin-average WM time series of the CNES/GRGS solutions, as 
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no further processing is applied. For the CSR solutions, we decorrelate the synthetic signal 

using the P4M6 filter and apply a Gaussian smoothing. The decorrelation reduces the basin 

average to 0.56 cm, and the Gaussian smoothing with half-widths of 100 km, 200 km, 300 km 

and 500 km, reduces it further to 0.22 - 0.53 cm, depending on the filter half-width (Table-1). 

Therefore, scaling factors given in Table 1 are used for the various filtered CSR solutions. A 

test of the scaling factor for the Caspian Sea revealed slightly different result than the one of 

Swenson and Wahr (2007) (2.7 versus 2.4). We believe that the small difference is due to a 

different land-sea mask and/or a difference in the P4M6 decorrelation filter. 

2.3. Terrestrial Water Mass Variations 

 

Terrestrial water mass (TWM) variability around the Black Sea exceeds the WM variability in 

the Black Sea, and any TWM will leak into the sea areas due to the limited degree and order 

of the SH expansion and the spatial filtering applied. In order to estimate this leakage, 

monthly TWM variability at one degree resolution is derived from NASA’s Global Land Data 

Assimilation System (GLDAS) (Rodell et al. 2004; 

http://csr.utexas.edu/research/ggfc/dataresources.html). The Noah land surface model version 

2.7.1 (Ek et al. 2003) with observed precipitation and solar radiation included was used. Also, 

the Climate Prediction Center (NOAA/CPC) land hydrology model was investigated (Fan and 

Van den Dool 2005), but problems with the land-sea mask rendered this model unrealistic for 

the Black Sea region.   

 

For consistency, GLDAS data were processed like the GRACE-based models (Swenson and 

Wahr 2007): GLDAS data were expanded into SH to degree and order 50 for CNES/GRGS 

solutions and additionally decorrelated using P4M6 filter and smoothed by a Gaussian filter in 

the context of CSR solutions.   
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2.4. Sea Level Data  

Monthly altimetry data from the Jason-1 satellite for the period from March 2003 to 

December 2007 were extracted from the Version 3.1 of the Radar Altimeter Database System, 

applying the standard corrections (Scharroo 2009). The monthly averages of along-track 

Jason-1 sea level data were spatially averaged over the Black Sea and the Azov Sea. The 

Jason-1 altimetry tracks covering the Black Sea are depicted with black dots in Figure 3. Note 

that the inverse barometer (IB) correction was not applied to the altimetry-based sea level 

data, in order to be consistent with both GRACE solutions that observe the total sea mass 

signal (Lombard et al 2007).  

2.5. Steric Heights from WOA05 Seasonal Climatology Data 

Steric sea level variations are not associated with WM variations, and in order to determine 

and remove the steric contribution to the observed altimetric sea level variations, the monthly 

temperature and salinity data on one degree resolution grids from the World Ocean Atlas 

2005 (WOA2005) database are used (Locarnini et al. 2006; Antonov et al. 2006). The steric 

sea level (SSLWOA05) was estimated by integrating the specific volume anomaly from the 

surface to a depth of 300 m, as Tsimplis et al. (2004) suggested that there is no significant 

contribution to the specific volume anomaly from water below 300 m in the Black Sea. Depth 

contours and grid points used for the SSLWOA5 computation are depicted in Figure 3. Due to 

the 300 m depth constraint, the averaged steric sea level variation could only be computed 

from 29 out of the 51 grid points in the Black Sea (Figure 3). 

3. RESULTS 

The leakage effects from the land surrounding the Black Sea are subtracted from the GRACE 

derived signals. Then, WM variations at annual and semi-annual scales are quantified by 

fitting a bias, annual and semi-annual terms to the monthly basin-average time series and 
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compared with Jason-1 based estimates. A realistic estimate of the magnitude of errors for the 

WM estimates cannot be provided as we were unable to obtain realistic estimates of the 

magnitudes of the errors for the GLDAS model and the steric effect.  

 
3.1. Leakage Effect from the Surrounding Land 

 

Annual TWM variations from the GLDAS model surrounding the Black and Caspian Seas are 

presented in Figure 4 corresponding to different GRACE processing strategies, in order to 

demonstrate the importance of accounting for leakage from nearby TWM especially due to 

Gaussian smoothing. The figure shows that the TWM signal is considerably larger around the 

Black Sea than around the Caspian Sea where Swenson and Wahr (2007) obtained the best 

result using a Gaussian smoothing of 300 km. Consequently, the leakage will increase in the 

Black Sea with larger smoothing. Figure 4 (a) shows the annual amplitude of TWM variations 

derived from the original GLDAS data, which ranges up to 10-20 cm at the southeastern 

border of the Black Sea. The truncated, decorrelated and smoothed GLDAS data in Figure 4 

are not scaled. In order to quantify the leakage effect, the annual amplitudes of the scaled 

basin-average hydrological leakage are presented in Table 2 and Table 3, corresponding to 

CNES/GRGS and CSR GRACE solutions, respectively.  

 

Table 2 shows that the effect of smoothing from the truncation of the SH at degree and order 

50 (Figure 4 (b)) generates a small hydrological leakage into the sea. Table 3 shows that the 

leakage is larger, when decorrelation and a 300-km Gaussian smoothing are applied (Figure 4 

(c)). It becomes even larger after a 500-km smoothing is applied (Figure 4 (d)). Therefore, we 

investigated the optimal radius of Gaussian smoothing for the CSR solutions. Several half-

widths of Gaussian filters (0 km, 100 km, 200 km, 300 km and 500 km) were tested. Table 3 

compares the annual and semi-annual components of the CSR derived WM estimates and 
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Table 4 evaluates them with steric corrected altimetry in terms of RMS difference and 

temporal correlation. We found that the larger the half-width of the Gaussian filter, the larger 

the amplitude of the WM variations, and hence the larger the amplitude difference between 

CSR GRACE and Jason-1 derived WM variations.  

 

The best agreement with Jason derived WM variations was obtained for unsmoothed (but 

decorrelated) CSR solutions in terms of amplitude, phase of the annuals signals (Table 3) as 

well as rms difference whereas the temporal correlation was equally high for various filtered 

CSR solutions (Table 4). Consequently we used the unsmoothed solution for further analyses. 

 

If it was possible to correct for leakage perfectly, the results would not be dependent on the 

choice of the smoothing radius for the CSR solutions. However our attempts were not very 

successful, which was partly due to the fact that the GLDAS model does not model 

groundwater variations whereas GRACE observes the integrated water storage.   

 

3.2. Water Mass Variations on Annual and Semi-Annual Scales 

 

The Jason-1 shows an annual amplitude of 6.8 ± 1.1 cm peaking in June. The steric sea level 

from WOA05 has an annual signal with an amplitude of 2.2 ± 0.9 cm peaking in August-

September, which agrees well with values of Stanev et al. (2000) who observed an annual 

amplitude of 2.5 cm peaking in mid-August calculated from climatic monthly mean heat 

fluxes. The steric correction reduces the amplitude of the Jason-1 time series slightly and 

advances the phase by one month. The resulting Jason-1 derived WM signal has an annual 

amplitude of 6.5 ± 1.4 cm peaking in May-June. 
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CNES/GRGS WM estimates shows an annual amplitude of 8.2 ± 1.2 cm (Table 2) peaking in 

April (Figure 5 (a)). Isolating the Black Sea WM by correcting for the leakage signal (Figure 

5 (a)) from CNES/GRGS yields an annual amplitude of 6.4 ± 1.3 cm peaking in May (Table 2 

and Figure 5 (c)).  

 

CSR WM estimates have annual amplitudes of 10.7 ± 1.8 cm (Table 3) peaking in April 

(Figure 5 (b)). Removing the leakage signal from the CSR solutions yields an annual 

amplitude of 7.4 ± 1.9 cm peaking in May (Table 3 and Figure 5 (c)). 

 

Table 5 compares CNES/GRGS and CSR derived WM estimates with the steric corrected 

altimetry.  There is a fairly good agreement between the both GRACE derived WM estimates 

and the Jason-1 derived WM signal in terms of both phase and amplitude and furthermore the 

results are consistent with Stanev et al. (2000) who suggested that river runoff into the Black 

Sea peaks in May.  

  

The presence of the semi-annual signal is a consequence of a small secondary maximum in 

December-January observed in both GRACE derived and Jason-1 derived WM time series 

(Figure 6). This maximum is likely explained by the increased precipitation in fall (Stanev et 

al. 2000). The Jason-1 derived WM signal has a semi-annual signal with an amplitude of 2.8 ± 

1.4 cm peaking in December-January and June-July. CNES/GRGS and CSR GRACE 

solutions have semi-annual signals with amplitudes of 2.9 ± 1.3 cm and 2.4 ± 1.9 cm 

repectively, both estimates peaking in December-January and June-July. 
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3.3. Inter-Annual Water Mass Variations  

 

The two GRACE derived WM time series are shown in Figure 6 in comparison with the WM 

estimated from steric corrected Jason-1 altimetry. The scaled WM time series from the two 

GRACE based estimates have a temporal correlation of 0.84 with an rms difference of 5.4 cm 

with each other. The WM time series from CNES/GRGS and CSR solutions show a good 

agreement with Jason-1 derived WM (Figure 6) and the temporal correlations are 0.83 and 

0.87 with rms differences of 4.6 cm and 4.80 cm, respectively. Figure 6 also shows that the 

annual WM varies significantly from year to year. The annual variation is largest in 2004, 

2005 and 2006, and significantly reduced in 2003 and 2007. Also the data shows a 10-15 cm 

drop in WM during the second half of 2007. This drop can potentially be caused by increasing 

evapotranspiration or reduced precipitation over the river drainage basin during the summer 

of 2007.  

4. CONCLUSION  

Two widely used GRACE solutions (CNES/GRGS RL02 and CSR RL04) have been 

compared with steric corrected Jason-1 altimetry for the period 2003-2007 in order to assess 

their performance in deriving regionally averaged oceanic WM variations at annual and inter-

annual scales in the Black Sea.  

 

The results show that GRACE estimated WM variations in the Black Sea are heavily 

influenced by the leakage of hydrological signals from the surrounding land. Consequently, 

the CSR solutions which normally require filtering are more affected by leakage than the 

CNES/GRGS solutions. GLDAS was applied to study the leakage, but as GLDAS only 

models the soil moisture signal in the upper 2 meters of soil and ignores WM variations from 

ground water and surrounding open bodies (e.g. the Mediterranean Sea, etc.) it was 
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impossible to precisely quantify and correct for TWM leakage for the Black Sea. Comparison 

with WM from satellite altimetry led us to prefer the unsmoothed (no Gaussian filtering) 

decorrelated CSR solutions along with and CNES/GRGS solutions for futher investigation. 

 

Good agreement between both GRACE solutions and the steric corrected altimetry was found 

in terms of both amplitude and phase. This showed that GRACE can be used to derive water 

mass variations in the Black Sea and other regions of comparable size, provided that the 

signal leakage from surrounding regions is corrected for. Both GRACE WM estimates show 

an annual signal of roughly 7 cm peaking in May and a semi-annual signal of roughly 3 cm 

peaking in June and December. Semi-annual signals in Black Sea WM variations are small 

but significant, as they modify the shape of the annual signal, creating a secondary maximum 

in December. 

 

Similarly, the amplitude of the annual signals varies significantly from year to year and is 

significantly larger during 2004-2006 than in 2003 and 2007. These year-to-year variations in 

the annual water mass mostly reflect the variations in inflow and outflow of water mass in the 

Black Sea through nearby rivers and straits as also suggested by Stanev et al. (2000). 
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FIGURES 

Figure 1. The Black Sea with its surrounding countries. 

 

Figure 2. The averaging kernel used to obtain basin-average GRACE derived WM variations from the 

CNES/GRGS and the CSR GRACE solutions.  

 

Figure 3. Water depths of the Black Sea in meters derived from the DNSC08 bathymetry data (Andersen et al. 

2010). The °°x11 grid points used for the computation of steric sea level at 300 m depth are represented by the 

black triangles. The Jason-1 altimetry tracks covering the Black Sea are depicted with black dots. 

 

Figure 4. Annual amplitude (cm) of the TWM from the GLDAS model a) Original GLDAS data averaged into 

one degree resolution b) GLDAS data expanded into spherical harmonics (SH) up to degree and order 50 c) 

GLDAS data in Figure 4 b), decorrelated using the P4M6 filter and smoothed using the 300-km Gaussian filter 

d) GLDAS data in Figure 4 b), decorrelated using the P4M6 filter and smoothed using the 500-km Gaussian 

filter. Note that the GLDAS data presented in this figure are not scaled.   

 

Figure 5. Scaled basin-average time series of the mass variations from GRACE and the leakage effects from 

GLDAS for (a) CNES/GRGS solutions (b) CSR GRACE solutions after the P4M6 decorrelation filter is applied 

(c) GRACE derived WM time series obtained after correcting for the leakage effects.  

 

Figure 6. Comparison of scaled GRACE derived and Jason-1 derived basin-average WM time series. Black 

curve and red curve represent CNES/GRGS based and CSR WM based estimates corrected for leakage effects, 

respectively. Jason-1 derived WM variations corrected for steric effect are shown in the blue curve.  
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TABLES 

Table 1. Scaling factors used for CSR solutions that are decorrelated and smoothed with Gaussian filters of 

varying half-widths. 

 

 

 

 

 

Table 2. Annual and semi-annual amplitudes and phases of the CNES/GRGS GRACE mass time series, GLDAS 

WM time series and the GRACE derived WM time series (CNES/GRGS-GLDAS) obtained after correcting the 

basin-average of CNES/GRGS GRACE mass time series for the leakage signal. The results presented in this 

table are obtained from the scaled basin-average time series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Half-width of 
Gaussian Filter 

(km) 

Scaling Factor 

0  1.78 (1/0.56) 
100 1.89 (1/0.53) 
200 2.22 (1/0.45) 
300 2.79 (1/0.36) 
500 4.59 (1/0.22) 

Annual Signal Semi-annual Signal 
Basin-average Time Series Amplitude 

(cm) 
Phase 
(days) 

Amplitude 
(cm) 

Phase 
(days) 

CNES/GRGS 8.2 ± 1.2 99 ± 9 2.8 ± 1.2 162 ± 13 
GLDAS 3.2 ± 0.3 61 ± 5 0.2 ± 0.3 89 ± 38 

CNES/GRGS-GLDAS 6.4 ± 1.3 127 ± 12 2.9 ± 1.3 162 ± 13 
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Table 3. Annual and semi-annual amplitudes and phases of the sinusoids best fitting to the monthly             

basin-averages of CSR GRACE, GLDAS and CSR GRACE derived WM (CSR-GLDAS) time series obtained 

after correcting the basin-average of CSR GRACE time series for the leakage signals. The results presented in 

this table are obtained from the scaled basin-average time series. 

 
 
 
 

Table 4. Temporal correlations and RMS differences between JASON-1 derived basin-average WM and CSR 

GRACE derived scaled basin-average WM time series (CSR-GLDAS) obtained after applying P4M6 

decorrelation filter and Gaussian filters of varying half-widths. 

 

 

 

 

 

 

 

 

 

Annual Signal Semi-annual Signal 
Basin-average 

Time Series 

Gaussian 

Filter Half-

width (km) 

Amplitude 
(cm) 

Phase 
(days) 

Amplitude 
(cm) 

Phase 
(days) 

0 
 

10.7 ± 1.8 105 ± 10 2.5 ± 1.8 159 ± 21 

100 11.7 ± 1.9 104 ± 10 2.7 ± 1.9 160 ± 21            

200 14.6 ± 2.0 101 ± 8 3.0 ± 2.1 161 ± 20 

300 19.3 ± 2.4 98 ± 7 3.3 ± 2.4 163 ± 21 

CSR 

 

500 32.7 ± 3.3 96 ± 6 3.7 ± 3.4 165 ± 27 

0 4.8 ± 0.4 67 ± 5 0.4 ± 0.4 124 ± 29 
100 5.7 ± 0.5 68 ± 5 0.5 ± 0.5 122 ± 28 

200 8.3 ± 0.6 69 ± 4 0.7 ± 0.6 118 ± 25 

300 12.7 ± 0.8 70 ± 4 1.1 ± 0.8 115 ± 23 

GLDAS 

500 25.2 ± 1.4 71 ± 3 2.1 ± 1.4 112 ± 20 

0 7.4 ± 1.9 129± 15 
 

2.4 ± 1.9 
 

164 ± 23 
 100 7.7 ± 1.9 129 ± 15 2.6 ± 2.0 

 
165 ± 22 

 200 8.5 ± 2.2 131 ± 15 3.0 ± 2.2 168 ± 21 
 300 10.0 ± 2.6 135 ± 15 3.5 ± 2.6 172 ± 21 
 

CSR -GLDAS 

500 14.3 ± 3.7 143 ± 15 4.6 ± 3.7 178 ± 23  
 

Half-width of 
Gaussian Filter 

(km) 

Temporal 
Correlation 

RMS (cm) 

0  0.87 4.79 
100 0.87 4.86 
200 0.88 5.26 
300 0.88 6.34 
500 0.86 10.51 
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Table 5. Annual and semi-annual amplitudes and phases of the sinusoids best fitting to the monthly             

GRACE derived scaled basin-average WM time series and to the other fields (JASON-1 and SSLWOA05) used to 

obtain Jason-1 derived basin-average WM time series.  

 
* CSR solutions and the corresponding GLDAS model outputs are truncated to degree and order 50, decorrelated 
by P4M6 filter and no Gaussian smoothing is applied.   
 

 

 
 

 

 

 

 

Annual Signal Semi-annual Signal 
Basin-average WM Time 

Series 
Amplitude 

(cm) 
Phase 
(days) 

Amplitude 
(cm) 

Phase 
(days) 

JASON-1 6.8 ± 1.1 171 ± 9 2.2 ± 1.1 179 ± 14 
SSLWOA05 2.2 ± 0.9 246 ± 23 0.7 ± 0.9 69 ± 35 

JASON-1 derived WM 6.5 ± 1.4 152 ± 12 2.8 ± 1.4 174 ± 14 
CNES/GRGS - GLDAS 6.4 ± 1.3 127 ± 12 2.9 ± 1.3 162 ± 13 

CSR* - GLDAS* 7.4 ± 1.9 129 ± 15 2.4 ± 1.9 164 ± 23 
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FIGURES 
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Figure 3 
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Figure 5 
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Figure 6 


